
 1

Tracking Time-Varying Parameters in Software Systems
with Extended Kalman Filters

Tao Zheng, Jinmei Yang, Murray Woodside
Dept. of Systems and Computer Engineering,
Carleton University, Ottawa K1S 5B6,
{zhengtao | jinmeiy | cmw}@sce.carleton.ca

Marin Litoiu, Gabriel Iszlai
Centre for Advanced Studies,
IBM Toronto Lab, Canada
{marin | giszlai}@ca.ibm.com

Abstract
Autonomic control of a service system can take
advantage of a performance model only if a way
can be found to track the changes in the system. A
Kalman Filter provides a framework for integrat-
ing various kinds of measured data, and for track-
ing changes in any time-varying system. This
work evaluates the effectiveness of such a filter in
tracking changes in performance parameters of a
software system that occur at different rates and
amplitudes. The time-varying system is a Web
application deployed in a data centre with layered
queuing resources, in which parameter variations
happen at random instants. The tracking filter is
based on a layered queuing model of this system,
with parameters representing CPU demands and
the user load intensity. Experiments were per-
formed to evaluate the effectiveness of the filter in
tracking the changes, and the requirements for the
filter settings for fast and slow variations in the
parameters. The target application is autonomic
control of a service centre.

1. Introduction
The goal of autonomic control[18] of a

computer service centre is to make controlled
changes in the system configuration to offset dis-

turbances in the workload or the system, and to
maintain Service Level Agreements (SLAs). Dis-
turbances in the workload include changes in the
load intensity or the types of services requested.
Disturbances in the system include failures or
load imbalances, or responses to security attacks.
A second goal of control is to optimize the use of
resources. Control is based on observations of the
ongoing Quality of Service (QoS), and of other
system measures reflecting system status and ac-
tivity, interpreted with the help of a performance
model.

The model in turn needs to reflect the system
structure and behavior and provide means to infer
current and future changes in the system. Figure 1
shows an application offering a service interface
to system users at the top right. System measures
at the bottom drive an autonomic control loop,
which tracks and updates a model, makes deci-
sions based on the model, the SLA, and other sys-
tem goals, and makes the controlled changes.

Control strategies have been described based
on different kinds of performance models, includ-
ing regression functions, queuing models [14]
[15], and dynamic models [1][3][6][7][13]. In
[12], the present authors described a hierarchical
structure of models and controllers, and suggested
the use of layered queuing models to quantita-
tively assess the effect of component and applica-
tion tuning or provisioning on the performance of
the application. Layered queuing models
[4][5][17] are extensions of Queuing Network
models [8], which capture contention for software
resources such as threads and critical sections, as

© Copyright 2005, Tao Zheng, Jinmei Yang, Murray
Woodside, and IBM Canada Ltd. All rights reserved. Per-
mission to copy is granted provided the original copyright
notice is included in copies made.

 2

well as for hardware. This paper assumes the use
of layered queues, which are described further in
Section 2.

Model

Decision

Model-Building
(Tracking Filter)

Monitoring

Application

(Web Application Interface)

User services QoS targets

Control
change Disturbance

change

QoS achieved,
and other

system measures

Figure 1 Architecture of an autonomic control
loop based on a tracking model

An important aspect of the autonomic con-

trol loop in Figure 1 is the model-building ele-
ment. Its role is to maintain accurate model pa-
rameters as the system evolves. In tracking
changes in the model parameters, various kinds of
data give useful but indirect information. Some
means is needed to integrate this data, in order to
estimate the model parameters. In [20], it was
proposed to integrate performance data and track
the parameters of queuing models with a tracking
filter. A tracking filter updates past estimates of
parameters from observations on functions of
them (such as performance observations), based
on a performance model and a statistical model of
the dynamic parameter change. Tracking filters
are used in many fields, but not yet in computer
system control. This paper evaluates the effec-
tiveness of the filter mechanism for tracking pa-
rameters of a model of a time-varying layered
system.

The first application of a tracking filter to
performance model parameter estimation in [20]
used an Extended Kalman Filter to estimate the
parameters of a queuing network with unknown
but constant parameter values. The transient re-
sponse of the filter when it first acquired the pa-
rameter value was evaluated under a wide range
of conditions. The filter showed:
• Almost instantaneous convergence to the

transient parameter change

• Low sensitivity to tuning parameters that
describe the measurement accuracy and the
parameter drift process
This work extends [20] to evaluate the suc-

cess of the filtering approach to track a time-
varying parameter in a layered queuing model.
The novel aspects of this work are:
• Evaluation of the effectiveness of approxima-

tions needed to make the filter practical
• The use in the filter of an approximate sensi-

tivity matrix for the layered queuing network
• The interaction of the rate of system change,

the system measurement accuracy, and the
length of the measurement steps, in determin-
ing the accuracy of tracking

A Kalman Filter is a model-based estimator

for time-varying state values in a dynamic system
that can be derived either as an optimal least-
squares estimator, or a Bayesian estimator. At
each step, the filter compares measured values (in
our case, performance measures) to predicted val-
ues from a model, to give a prediction error e.
From e, it updates the state estimates x with a
linear update equation:

xnew=xold+Ke.
The Kalman gain matrix K is a function of

certain properties of the model and of estimates of
the accuracy of both the measurements and the
model, which are also updated by the filter. K is
updated at each step to minimize the mean of the
square of the prediction error e (or the mean of a
quadratic norm on a vector e). Details are given in
Section 2.

Kalman Filters were originally derived for
estimating states of a linear dynamic system [10],
and were extended to provide an approximately
optimal filter for parameter estimation and for
estimating states in non-linear systems. The Ex-
tended Kalman Filter is heavily used to estimate
positions in space from radar data (see [2]). There
is a vast literature on Kalman Filters; the refer-
ences cited provide further background.

The remainder of the paper is organized as
follows. Section 2 describes a Web application
and its layered queuing performance model; Sec-
tion 3 explains the Extended Kalman Filter and its
implementation for tracking layered queuing pa-
rameters; Section 4 presents the experiments and
the results. The practical implementation issues of

 3

the Kalman Filter are detailed in Section 5, and
conclusions are presented in Section 6.

2. Time-varying Web Appli-
cation
We consider a Web-based application and its

associated layered queuing model structure as
shown in Figure 2. In terms of Figure 1, the Web
application represents the controlled Application
while the layered queuing model is the Model
element in the autonomic control loop. In this
section, we identify the structure of the perform-
ance model, the directly measurable data, the indi-
rectly measurable data and the change characteris-
tics of the above.

WebServer
(M threads)

retrievePage
[Sw ms]

Database dbOp
[Sd ms]

Net
(delay)

netdelay
[50 ms]

diskOp
[15 ms]

Disk

NetP
(physical)

WSProc

DiskDev DBProc

User
(N users)

requestPage
[thinkTime=Z s.]

(host)

Workstations

(0.4) (0.2) (host)

(host) (host)

(1)

(1)

Figure 2. The Layered Queuing Model of a Web

application, showing its organization

The User block in Figure 2 represents N

separate users and their browsers, which alter-
nately send requests to the Web Server every Z
ms. (as a default, Z = 1000). Z is known as the
think time. The WebServer block represents the
server software with M threads, running on proc-
essor WSProc (indicated by the “host” relation-
ship). The model represents M servers with a sin-
gle queue of user requests. The box labeled Re-
trievePage represents the operation done for the
users, and requires a CPU demand of Sw ms (de-
fault value 5 ms), one network latency of 50 ms,
and on average 0.4 database operations and 0.2
disk operations. The disk and the database are
here represented as single servers with a queue,
running on their own devices DBProc and Disk-
Dev, with CPU demands of Sd (default value 10
ms) and 15 ms, respectively.

We will consider this model as a representa-
tion of a Web-based application system with a
similar structure and the same structure of re-

quests between its components. In a real system,
the behaviour of the components would be more
complex than in the model, and the structure
could contain more detailed substructures. For
instance, a real database server would include
threads, concurrency control mechanisms, and
perhaps its own storage subsystem.

For this study, we will represent the real sys-
tem by a simulated system with the same structure
as Figure 2. In this way, we can study the success
of the tracking filter in tracking the parameters of
the simulated system, if they vary.

2.1 Parameter Changes
Figure 2 shows five parameters as variables:
N = number of active users (default 100)
M = number of Web-server threads (default

50)
Z = mean User think time per request (de-

fault 1000 ms)
Sw = mean Web server demand per user re-

quest (default 5 ms)
Sd = mean database server CPU demand per

database request (default 10 ms)
A major challenge to autonomic systems is

variation in offered load arriving at a service cen-
ter. This phenomenon can be modeled by varia-
tions in Z or in N; a larger N or a smaller Z leads
to a higher level of offered load. Variation in the
type of transaction being executed by users is a
second challenge, and it can be captured by varia-
tion in the CPU demand, or the request frequen-
cies. CPU demands in a data centre can also vary
because of provisioning (upgrading or downgrad-
ing the hardware). We will vary Z and the CPU
demands, and keep N and the request frequencies
constant.

We assume that the system has parameters
that change over time, according to a parameter
change process as follows:
• Changes in some parameter a occur at dis-

crete random instants, at a mean rate of αa
changes/s, and the parameter values are con-
stant between changes

• At a change point, the new value a’ is inde-
pendent of the previous value a, and is gov-
erned by a distribution with density function
f(a), mean ma , variance σ2

a, and coefficient
of variation Ca = σa/ ma

 4

The amplitude and frequency of this change proc-
ess are characterized by Ta = 1/αa, the mean time
between changes for a, and by Ca.

There might be other change processes, such
as a smooth process of gradual increments over
time.

For simplicity, we assume that only Z and Sd
change. Thus, for tracking purposes, the parame-
ter vector is a = [Z] or a = [Sd].

2.2 Performance Measures
The directly measurable performance data

would be taken, in a real system, from instrumen-
tation and operating system counters. In our simu-
lation, we consider:
• Mean response time to users (R)
• Utilization of the Web server processor(Uw)
• Utilization of the database processor(Ub)
• Utilization of the disk(Ud)
Thus the measurement vector is z = [R, Uw, Ub,
Ud], averaged over a measurement time interval of
length T.

Other measures might be of interest, such as
quantiles of response time, or the probability of
exceeding a stated target response time. However,
the measures above are well understood and will
give us a first view of the capability of tracking.

Values for the think time Z, or the CPU de-
mands Sw or Sd are not directly accessible at run
time. They also vary over time, so we compute
and track them indirectly by using the Extended
Kalman Filter and the layered queuing models.
The next section describes the tracking filter,
which deduces these hidden measures from the
measures that are available.

3. The Tracking Filter
The filter takes the standard form of an Ex-

tended Kalman Filter (EKF) as described, for in-
stance, in [2]. It applies to cases where there is a
model xnew = f(x old) for the evolution of the de-
sired state-and-parameter vector x, and a model z
= h(x) for the relationship between the observa-
tion vector z and x. Here, we replace x by our
unknown parameter vector a. In Kalman’s classic
paper [8] the relationships f and h were linear and
an optimal (least-squares) estimator was derived;
in the extended filter the relationships are non-

linear and the optimality is only approximate. In
our case, f is the identity, but h is a nonlinear
function.

 In the discrete time filter used here, time
advances in steps of duration T, indexed by a step
counter k. The change process of the parameter
vector ak is modeled as a drift driven by random
increments:

ak = ak-1 + wk-1 (1)

The random vector wk has a mean of zero and has
the disturbance covariance matrix Qk (which we
assume to be a constant Q), and is independent
from one step to the next.

The system observation vector zk is modeled
as a function h(ak), defined in our case by the
relationship that determines the performance from
the parameters, including an error of measure-
ment. Thus, it assumes:

zk = h(ak)+ vk (2)

The assumed random error vector vk has a mean
of zero, is independent from one step to the next,
and has the measurement error covariance matrix
Rk.

The filter assumes that the relationship h is
given by a performance model, the layered queu-
ing model for the system, which includes the pa-
rameter vector a.

3.1 The Filter Computations
The filter computations are recursive, begin-

ning from an initial estimate a0, and an initial er-
ror covariance matrix P0. Each recursive step can
be summarized as follows:
(1) Based on the most recent parameter estimate
ak-1, the filter predicts the measurements as h(ak-1)
(because the assumed drift has zero mean, the
predicted parameter value is the same as the pre-
vious estimate). From the current observation
vector zk, it computes a prediction error vector ek:

ek = zk - h(ak-1) (3)

(2) The core filter calculation is the update of the
estimates by the linear feedback equation:

ak = ak-1 + Kk ek (4)

where the “Kalman Gain” matrix Kk is computed
as follows:

 5

(a) Computation begins from an estimate Pk
of the covariance matrix of estimation errors
for ak . Pk is projected forwards one step,
based on the drift covariance matrix Q:

P-
k = Pk-1+Q (5)

(b) Then the optimal gain matrix Kk (which is
only suboptimal when h is a nonlinear func-
tion, as it is here) is given by:

Kk =P-
kHk

T(HkP-
kHk

T + Rk)-1 (6)

In this equation, the matrix Hk is the matrix of
partial derivatives of the performance model func-
tion h, with respect to the parameters a at their
current values ak-1. Thus, Hk is a matrix of sensi-
tivity values for the performance model.
(3) When ak is updated, the covariance estimate
Pk is also updated, to take into account the im-
proved accuracy after the filter step:

Pk=(I-KkHk)P-
k (7)

 Where there is no ambiguity, the step subscript
k will be omitted. Figure 3 shows the organization
of the filter.

 System

(Web app)
Model h (x)

Kalman Filter

a, P: new parameters
and covariances

a: new
parameters

H:
sensitivities

z:
measured
performance

z=h(x): predicted
performance

e:
prediction

error

Monitor

Figure 3. The Kalman Filter architecture

The optimality and convergence properties

of the EKF depend on the way the functions are
linearized around the current estimate of a [11].
This Extended Kalman Filter (EKF) [2][19] lin-
earizes f(a) and h(a) by a first order Taylor series
around the state estimate â-

k-1 and does not take
linearization errors into account. A variant called
the Iterative Kalman Filter (IEKF) linearizes h(a)
around the predicted state estimate ak-1. Other
variants of the filter, like the Unscented Kalman
Filter [9] or the Divided Difference Filter [16]
capture the linearization errors in the covariance
matrices. They were shown in [11] to provide
better estimates when dealing with non-linear f(a)

functions, while EKF and IEKF provide better
performance when dealing with non-linear h(a).

3.2 The Influence of the Filter
Parameters
The matrices Q and R capture knowledge or

assumptions about the disturbances and the meas-
urement errors, and they also influence how the
filter reacts to new data. Both Q and R can often
be assumed to be diagonal, with variance terms
for the one step disturbances and the measurement
errors, respectively.

Small values in Q indicate that only small
changes are expected, and lead to a small filter
gain matrix K that can only adapt slowly. A large
value of Q leads to large P and thus large gains
that might overreact to measurement errors.

Each diagonal element Qii should be set to
the square of an estimate of the magnitude of the
changes to be tracked in parameter ai:

Qii = (approx. magnitude of change in ai)2
Each diagonal element Rii should be an es-

timate of the variance of the measurement error in
zi. If the averaging time T is large enough (which
we shall assume is the case) Rii varies as:

 Rii = const/T (8)
A standard step-length T* was determined (by
experiment) that gave a 95% confidence interval
of +- 5% in the user response time measure z1. For
the system in Figure 2 with the default values of
the parameters, T* = 15.7s. From the asymptotic
properties of the t distribution, the confidence
interval is 1.96 times the standard deviation. This
implies that when T = T*,

R11 = (0.05 (mean of z1)/1.96)2.
For other values of T, the ratio of T to T* is de-
noted by γT:

γT = T / T*
 and then, approximately:

R11 = (0.025 (mean of z1))2/ γT
This value could be used in the filter, with the
model prediction to estimate the mean of z1.

Further, it can be assumed that the confi-
dence intervals of the other measures have similar
accuracy. Thus:

Rii = (0.025 (mean of zi))2 / γT (9)

 6

4. Results
 To demonstrate the ability of the filter to fol-
low parameter changes, the system in Figure 2
was simulated with deterministic and random
parameter changes (disturbance changes). A
tracking filter was set up, based on the same
model solved by an approximate analytic calcula-
tion with the LQNS solver.
 The filter was driven by the measurement
vector defined above, made up of the user re-
sponse time and the device utilizations:

z = [R, Uw, Ub, Ud]
These are typical of readily available performance
measures from a real system.

Changes in a single parameter were tracked,
with either Z or Sd.

The goodness of tracking can be measured
in two ways, by the performance prediction error
ER or by the parameter tracking error EA. We will
use the RMS (root-mean-square) tracking error
measures for both of these quantities.

4.1 Tracking Deterministic
Changes in Parameters
The tracking performance was recorded for a

series of alternating step changes in value of two
parameters:
• User think time Z (which affects the arrival

rate; smaller Z gives a higher arrival rate)
• Database service time Sd

Case 1: Z alternates between 500 ms and 2500 ms
with a change every 471 s. (30T*). This creates a
much larger arrival rate for small Z than for large
Z (about 168/s when Z = 500, vs 39/s when Z =
2500). Equivalently, we could have modified the
arrival rate directly.
The filter parameters were set to:
• T = T* = 15.7 s. (making γT = 1). This gives

an estimation accuracy such that the 95%
confidence interval in the mean user response
time is +-5% at the base case parameters.

• Q = 4,000,000. Q is a scalar, since there is
just one parameter to track, and this is the
square of the step change in Z that is applied
in going from 500 to 2500.

• Rk was a diagonal matrix with an element for
each performance measure. From Eq. (9), the
ith element is Rk,ii = (0.025*hi(ak))2

 Figure 4 shows a fragment of the record of
values taken from the simulation and the tracking
filter. The filter tracks the change in Z with a one-
step delay plus a few steps to settle to the new
value.

0

500

1000

1500

2000

2500

3000

3500

1 16 31 46 61 76 91 106 121 136 151 166

Time Sequence

Th
in

k
Ti

m
e

real value
tracking value

Figure 4 (Case 1) Tracking performance for a
deterministic sequence of mean user think times.

(T = T*)

 The high and low values of Z give a moderate
load and a heavy load on the system, respectively.
Thus the performance calculations traverse the
knee in the performance curves between these two
regimes, where the function h is the most nonlin-
ear.
 The tracking error is visibly greater for Z =
2500. The arrival rate is lower, and there are
fewer response times in the averaging period, so
the variance of the measurement error is larger
than is allowed for by R when it is calculated by
Eq. (9). The variation of measurement errors with
load is quite a complex phenomenon, and Eq. (9)
makes the simplifying assumption that the relative
accuracy is constant in a neighborhood of the con-
figuration for which it was measured (in establish-
ing T*). This assumption allows constant values
to be used for Q and R.
 The assumption is justifiable if the sensitivity
to R is low. Figure 4 supports the assumption, in
that the tracking errors at both extremes are mod-
erate. Further tuning of Q and R might give even
better performance.

 7

Case 2: The database demand Sd alternates be-
tween 10 ms and 40 ms, with changes every 471
s. At the lower value, the system is lightly loaded;
the higher value creates a significant load at the
database, with a queuing delay that blocks some
application threads.
 Q was set to 900, and R was set as in Case 1.
 Figure 5 shows how the filter tracked the
changes, corresponding to Figure 4 for Case 1.
Again, the filter takes a few steps to track the
(very large) change.
 In this case, the larger tracking errors are
evident for the larger value of Sd, which corre-
sponds to a heavier load (as opposed to the case
above in which the larger value of Z gives the
lighter load). This time the number of responses
in an averaging period decreases with heavy load,
since the delays at the server back up the traffic.
Also, there is a general tendency for the accuracy
of statistics to suffer as system load increases,
because of increased correlation of the successive
responses. This dependency is complex and was
not accounted for in setting R according to Eq.
(9).
 Again the system is traversing through the
most nonlinear range of the performance relation-
ships expressed in h(a).

0

10

20

30

40

50

60

1 15 29 43 57 71 85 99 113 127 141 155 169

Time Sequence

D
B

 D
em

an
d

real value
tracking value

Figure 5. (Case 2) Tracking of deterministic
changes in the database service time Sd .(T= T*)

4.2 Tracking Random Changes in
Parameters
A random change process was generated in

the simulation, with step changes of a parameter
value occurring at randomly chosen instants (mul-
tiples of a common time step), at a mean rate of α
changes/s. The change process was applied to one
parameter at a time, first to Z and then to Sd.

Figure 6 shows a fragment of a trace of the
filter tracking random changes in the mean User
think time. Sometimes the “real” mean value used
by the simulation (the line with the diamonds)
changes in the middle of a measurement step, so
there is a point between two values. Generally, the
filter follows a change within a few steps.

0

500

1000

1500

2000

2500

3000

1 10 19 28 37 46 55 64 73 82 91 100

Time Sequence

Th
in

kT
im

e

Real Value
Tracking Value

Figure 6. A trace fragment of tracking random
changes.

Experiments were done for a range of values

of the measurement step time T, the rate of
changes α, and the variance of the changes σ2.
The time T*, which is characteristic of the system
and designates the time to get a moderately accu-
rate average by measurement, was used to nor-
malize these values.

The normalized relative parameter change
rate, γα, specifies the change rate relative to T*:

γα = αT*.
As already defined, the normalized relative meas-
urement interval γT specifies the measurement
interval T relative to the time T*:

γT = T/T*
Base values of these parameters in the following
experiments were γα = 0.025 and γT = 4.

At each change instant, a new value of the
parameter (Z or Sd) was chosen independently
according to a shifted hyper-exponential distribu-
tion (such as: Z = constant + random part), which
had a mean value equal to the average value of the
parameter and a stated coefficient of variation C.
The base value of C was C = 1, but in Case 7, C
was varied from 0.1 to 2.

Case 3: Parameter Tuning.
 The filter tuning parameters Q and R might
affect the way the filter reacts. Small entries in Q

 8

make the filter conservative, as it assumes only
small changes are possible in a single step. Small
entries in R make the filter track more aggres-
sively, as it assumes that the measurements are
accurate and therefore the filter must react in or-
der to explain them. We must learn how to set
these parameters, and also it is important to un-
derstand how sensitive the whole filter process is
to their values.

To investigate these effects, the entries of Q
and R were multiplied by factors denoted as QFac
and RFac respectively. These two factors were
varied over two orders of magnitude. Otherwise,
the experiments had the usual base values of γα =
0.025, γT = 4.0 and CVa= 1.0. The expressions
used for Q and R were:

Qii = (QFac(mean of ai)CVai)2 (9a)
Rii = ((RFac) (zi) / 1.96)2 /γT (9b)

Table 1. (Case 3) The RMS tracking error in the
mean user think time Z, as R and Q are varied

 QFac RFac
 0.01 0.025 0.05 0.1 0.25 0.5 1 2

0.02 124.6 140.0 143.7 143.7 143.7 143.8 144.6 2.72E7

0.05 156.4 124.6 131.2 143.7 143.8 143.8 143.8 143.6

0.1 186.4 145.9 124. 6 131.2 143.8 143.8 143.8 143.8

0.2 221.1 176.1 145.9 124.6 140.0 143.8 143.8 143.8

0. 5 264.8 221.1 186.4 156.4 124.6 131.1 143.7 143.8

1 290.6 255.1 221.1 186.4 145.9 124.6 131.2 143.7

2 317.0 282.6 255.1 221.8 176.1 145.9 124.6 131.0

4 345.1 308.1 282.6 255.1 290.9 176.1 145.9 124.6

The results in Table 1 show that it is the ra-

tio of Q to R that is important, rather than the
values of the parameters. Also, above the diagonal
(when Q is too large, and the filter over-responds
to measurement errors), there is only a modest
effect up to the point in the top right corner,
where the error explodes. On the other hand,
when Q is too small (the filter is sluggish), the
error increases steadily.

We can conclude that the tracking perform-
ance is somewhat insensitive to Q and R. Around
the ideal balance between Q and R, there is a
wide band (more than a factor of 10 up or down)
in which the filter is “not bad” (within a factor of
2 in RMS tracking performance). This agrees with
the results reported in [20] for transient response

and queuing models. Furthermore, it is better if Q
should be somewhat overestimated (rather than
underestimated) relative to R.

For the rest of the paper, we set QFac =0.1
and RFac = 0.2.

Case 4: Measurement Time

The next investigation considers how the
measurement step time affects the accuracy of
tracking. The mean number of parameter changes
per measurement step is given by the ratio αT, for
a given parameter change process with mean rate
of α changes/s. We expect that low values of this
ratio, such as αT << 1, will be necessary for good
tracking, but we are also interested in determining
the relationship between αT and tracking. Given a
measurement step T, the results will show how
fast a parameter change process can be tracked. In
terms of the normalized values γT and γα, αT = γT
γα .

The mean user think time Z, and thus the re-
quest arrival rate, changed at random instants as
described above. Z was chosen from a distribution
with mean 1000 ms. and CZ = 1 (thus, Q was set
to 105). The relative change rate was set to γα =
0.025, which makes the average time between
changes 40T*. The relative measurement interval
was varied over the range γT = [0.4, 40], so that
the smallest value gives measurement intervals of
relatively poor accuracy, while the largest value is
so long that it equals the mean change time.

Figure 7 plots the RMS tracking error (Ea)
in the estimate of Z from 1000 measurement and
tracking steps and also the RMS prediction error
(Er) for the user response time coming from the
estimated model. The horizontal axis again gives
log10 γT, which ranges from 0.4 to 40.

The longer measurement intervals clearly
are too slow and fail to keep up with changes; at
γT = 40 (the right-hand end) there is on average
one change per measurement interval, so the filter
never has a chance to settle. The shorter intervals
give lower measurement accuracy, but have the
opportunity to smooth more.

Up to γT = 4 (with log = 0.6), the parameter
tracking is quite good, with RMS error Ea of
about 100, which is 10% of the mean value mZ =
1000 ms. It is also insensitive to γT, which sug-
gests that the key factor for tracking is to make
the measurement interval much shorter than the

 9

inter-disturbance time (frequent measurements are
better than accurate ones). According to Figure 6,
there should be 10 measurement and tracking
steps between disturbance changes. With fewer,
longer measurement intervals, accuracy deterio-
rates steadily.

The RMS prediction error (Er) has the same
trend as the RMS tracking error. In the “good
tracking” regime at the left, Er is about 5, which is
less than 10% of the mean response time of this
system in light loads.

0
100
200
300
400
500
600
700
800

-0.5 0 0.5 1 1.5 2

Log(GAMMAt) RMS(Ea)
10RMS(Er)

Figure 7. (Case 4) RMS errors in tracking random
changes in user think time Z, for different lengths

of the measurement interval.

Case 5: Rate of Disturbance Changes
 The rate of change of the User think time was
varied, so the normalized rate γα = αT* varied
from 0.01 to 1 while γT = 4. For γα less than 0.04
(which gives one change every 10 measurement
steps) the RMS tracking error is again around 50,
which is only 5% of the mean value of Z. Up to γα
=0.1 (one change every 4 measurement steps) it is
still less than 130, or 13% of the mean. Above this
point, the error increases rapidly.

0
100
200
300
400
500
600
700

-3 -2 -1 0
Log(GAMMAa)

R
M

S

RMS(Ea)
10RMS(Er)

Figure 8 (Case 5) The RMS errors in Z as
γα varies from 0.01 to 1

 The error in predicting the mean user re-
sponse time shows a similar trend. The filter
gradually loses the capability to predict accu-
rately, when the disturbance change rate is faster
than one every tenth measurement step.
 This confirms the evidence in Case 3 when
the disturbance rate was held constant and the
measurement step was varied.

Case 6: Disturbance to Service Demand
 Disturbances to service demands can arise
when the users of a system swing to using differ-
ent functions or using functions differently, for
example to requiring larger database searches for
each operation.
 The mean database server demand Sd changed
randomly, using the same random disturbance
process as for Z in Case 4 and 5 above. The aver-
age value is mSd = 10 ms., and CSd = 1.
 As in Case 4, the normalized measurement
time interval was varied from γT = 0.4 to 40, and
the RMS tracking and prediction errors were de-
termined.

0
50

100
150
200
250
300
350

-1 0 1 2
Log(GAMMAt)

R
M

S

RMS(Er)
50RMS(Ea)

Figure 9 (Case 6). RMS errors in tracking random
changes in Sd, as the measurement step (and γT)

change.

Figure 9 shows quite small tracking errors

for γT below 1 (Ea is about 1, or again about 10%
of the mean parameter value mSd = 10 ms.). In the
“good” range, the response time prediction error
(Er about 50) is similar to previous cases.

Case 7: Different Disturbance Variances C
 This final case considers different amplitudes
of the random changes to the think time Z. The
coefficient of variation CZ of the disturbances to Z
was varied over a range from 0.1 (quite small

Log10(γγγγαααα)

Log10(γγγγT)

Log10(γγγγT)

 10

changes) to 2. The other parameters took the base
values.
 In Cases 4 and 5 the changes to Z around the
mean of 1000 ms. had a standard deviation of
1000 also; here the standard deviation σZ = mZCZ
varies from 100 to 2000. As expected, Figure 10
shows that the RMS prediction error is smaller
when the disturbances are smaller.

For small values of CZ (CZ < 0.3) the track-
ing error approaches a constant value; this is be-
cause the filter responds to measurement errors
even when disturbances are very small. Up to CZ
= 1, the errors are still moderate. At CZ = 2, they
explode to very large values.

0

100

200

300

400

500

-1.5 -1 -0.5 0 0.5

Log10(C)

R
M

S

RMS(Ea)
10RMS(Er)

Figure 10. (Case 7) Tracking results for different
values of C

5. Guidelines for Practical
Implementation
One of the most important issues in imple-

menting the filter is the choice of the size of
measurement interval T. This interval is not only
going to affect the performance of the filter, and
hence the accuracy of the layered queuing model,
but also it will dictate the timing for the actions of
the Decision element (see Figure 1). Regarding
the latter relationship, in classical control, the
control and measurement intervals are the same: if
the Decision element actuates the system every
second, the decision is based on the measurements
taken in a second-long time window. The experi-
ments reported in the paper shows that the per-
formance of the filter is dependent on the size of
the measurement interval, with an optimum
around a system constant T*.

T* is approximately 15.7s for the case study
of this paper. The value of T* can be determined

by experiment on the system to be controlled, by
estimating the accuracy of averages over any pe-
riod T and then applying Eq (8).

In practical implementations of the filter,
what is important is not the length of the meas-
urement in physical time units, but the number of
events we observe, such as user interactions,
which in turn triggers new measurable perform-
ance metrics such as response time or utilization.
The system constant period of 15.7 s in our exam-
ple translates to about 1500 measured response
times, which suggests that the observation win-
dow should be set in the order of thousands meas-
urable events. This result is also consistent with
the results reported in [20]. However, this obser-
vation window might be too large for the Decision
element and might allow the errors to accumulate.
To compensate for that, the filter and the Decision
elements might work as follows:
• A large observation window T could be cho-

sen, with about 5000 events; the first control
change can happen after the first 5000 events.

• A smaller control-step window ∆ could be
chosen, with about 100 or 500 events. The
tracking and control calculations could be re-
peated every ∆ seconds, using data from the
past T seconds.
Other parameters needed for the implemen-

tation of the filter are the covariance matrices Q
and R that characterize the errors of the model
and of the measurement process, respectively.
Both are diagonal matrices representing inde-
pendent errors and disturbances. We found that it
is best to update R at every filter step k, taking
into account the measured values as in Eq. (9).
Since Q represents expectations about the distur-
bance process, it also could be updated based on
recent tracking experience. However, we have not
experimented with this parameter.

The experiments of Case 3 showed that it is
the ratio of Q to R that matters, not the values
separately, and that Q can be overestimated (or R
can be underestimated) by up to 2 orders of mag-
nitude with only a slight effect on tracking qual-
ity.

The initial values for the estimated vector a
as well as the structure of the layered queuing
model h(a) must be chosen prior to starting the
filter. This can be done by tracing or monitoring
the software system under control. Experiments
conducted in [20] showed that the convergence of

 11

the filter depends only slightly on the initial value
P0; the filter has a good convergence when P0 is a
diagonal matrix with the diagonal elements the
square of the initial estimates a.

The sensitivity matrix Hk, is computed at
every step k as the numerical approximate deriva-
tives of measured variables represented in z, com-
puted at the estimated parameter values a. The
numerical derivatives are calculated here by using
the layered queuing model LQNS [4], with the
results denoted h(a) in the equations (1)-(7). The
elements of a were varied one at a time by an in-
crement δ, and the model was solved to find the
differences in the vector z. We found it was essen-
tial to use double precision arithmetic in the ma-
trix operations of the filter.

A simplified version of the LQM calcula-
tions might provide adequate accuracy for the
sensitivities, more quickly. However, for the sys-
tem in Figure 2 the LQNS solution takes only a
few milliseconds.

6. Conclusions
The most important conclusion from these

results is that an Extended Kalman Filter is a
practical tool for tracking the parameters of a
time-varying layered queuing system. Its parame-
ters can be set from information and assumptions
about the system that are reasonable and not too
difficult to make, and tracking performance is
adequate over wide ranges of the parameters (not
very sensitive).

Various filter modifications that have been
found useful in other settings should still be inves-
tigated for the application to performance models.

Acknowledgements
This research was supported by the IBM Centre
for Advanced Studies (CAS), Toronto, and by the
Natural Sciences and Engineering Research
Council of Canada.

About Authors
Tao Zheng is a PhD student from Carleton Uni-
versity. He received his Master degree from
Carleton University in 2002. His research inter-
ests include: model building, tracking and opti-
mizing for real time and distributed systems; per-
formance modeling of distributed software, based
on layered queuing network (LQN) models.

Jinmei Yang is a Research Assistant with the
Real-Time and Distributed Systems Lab (RADS
Lab) at Carleton University, Canada. She received
her M.S. degree in Computer Engineering from
Carleton University in 2005. Prior to joining
RADS, she worked as wireless network engineer
in China Mobile Communication Company. Her
research interests include computer communica-
tion and networks, simulation and modeling, per-
formance evaluation and QoS control.

Murray Woodside received the Ph.D. in Control
Engineering from Cambridge University, Eng-
land. He has taught and done research in stochas-
tic control, optimization, queuing theory, per-
formance modeling of communications and com-
puter systems, and software performance. His
current interests are software engineering and
performance engineering of distributed systems
and telecommunications software. In the period
1995 – 1999, he was Vice-Chair and Chair of
SIGMetrics of the ACM. He is also Thrust Leader
for the Software thrust of TRIO, the Telecommu-
nications Research Institute of Ontario.

Marin Litoiu is Senior Research Staff Member
with the Centre for Advanced Studies at the IBM
Toronto Laboratory. He received his PhD degree
from Carleton University, Ottawa, and holds a
doctoral degree from University Politechnica of
Bucharest(UPB). Prior to joining IBM (1997), he
was a faculty member with the Department of
Computers and Control Systems at the UPB and
held research visiting positions with Polytechnic
of Turin, Italy, (1994 and 1995) and Polytechnic
University of Catalunia (Spain), and the European
Center for Parallelism (1995).

Gabriel Iszlai is a Senior Developer with the
IBM Tivoli On Demand group in Toronto, Can-
ada. He received his B.S. degree in 1992. Prior to
joining IBM he worked as a Network Architect
for ThinkDynamics, a company acquired by IBM
in May 2003. He was one of the initial designers
of the former ThinkControl application, known
today as IBM Tivoli Intelligent Orchestrator.
Prior to that, he worked for over 8 years in the IT
industry for different European telecom compa-
nies.

 12

References
[1] Tarek Abdelzaher, Kang G. Shin, Nina

Bhatti, ``Performance Guarantees for Web
Server End-Systems: A Control-Theoretical
Approach,'' IEEE Transactions on Parallel
and Distributed Systems, Vol. 13, No. 1, Jan
2002.

[2] E. Brookner, Tracking and Kalman Filtering
Made Easy, Wiley Interscience, 1998.

[3] Yixin Diao, Xue Lui, Steve Froehlich, Joseph
L. Hellerstein, Sujay Parekh, Lui Sha, "On-
Line Response Time Optimization of An
Apache Web Server," International Work-
shop on Quality of Service, 2003.

[4] R.G. Franks, S. Majumdar, J.E. Neilson, D.C.
Petriu, J.A. Rolia and C.M. Woodside, "Per-
formance Analysis of Distributed Server Sys-
tems," Proc. Sixth International Conference
on Software Quality, Ottawa, Canada, Octo-
ber 28-30, 1996, pp. 15-26.

[5] Greg Franks, "Performance Analysis of Dis-
tributed Server Systems," PhD. thesis, Carle-
ton University, Jan. 2000.

[6] Neha Gandhi, Joseph L. Hellerstein, Su-
jay Parekh, and Dawn M Tilbury, “Manag-
ing the Performance of Lotus Notes: A Con-
trol Theoretic Approach,” Proceedings of the
Computer Measurement Group, 2001.

[7] Hellerstein J., Diao Y., Parech S., Tilbury D.,
Feedback Control of Computing Systems,
John Wiley &Sons, Inc., 2004.

[8] R. Jain, The Art of Computer Systems Per-
formance Analysis, John Wiley & Sons
Inc., 1991.

[9] S. Julier, J. Uhlmann, H.F. Durant-Whyte, “A
new method for approximating nonlinear
transformations of means and covariances in
filters and estimators,” IEEE Transactions on
Automatic Control, vol. 45, no. 3, pp. 477-
482, March 2000.

[10] R.E. Kalman, “A new approach to linear fil-
tering and prediction problems,” Transac-
tions of ASME, Journal of Basic Engineering,
vol. 82, pp 34-45, March 1960.

[11] T. Lefebvre, H. Bruyninckx, and J. De Schut-
ter, “Kalman filters for nonlinear systems: a
comparison of performance,” Internal Report

01R033, KU Leuven, 2001,
http://people.mech.kuleuven.ac.be/~tlefebvr/p
ublicatie.htm.

[12] Litoiu M., Woodside M., Zheng T., “Hierar-
chical model based autonomic control of
software systems,” Proceedings of Design
and Evolution of Autonomic Software
(DEAS’05) Workshop, St. Louis, USA, May
2005.

[13] Ying Lu, Tarek Abdelzaher, Chenyang Lu,
Lui Sha, Xue Liu, ``Feedback Control with
Queueing-Theoretic Prediction for Relative
Delay Guarantees in Web Servers,'' Real-
Time and Embedded Technology and Appli-
cations Symposium, Toronto, Canada, May
2003.

[14] D. A. Menasce, M. Bennani, "On the Use of
Performance Models to Design Self-
Managing Computer Systems," Proc. 2003
Computer Measurement Group Conference,
Dallas, TX, Dec. 7-12, 2003.

[15] D. A. Menasce, "QoS-aware software com-
ponents," IEEE Internet Computing,
March/April 2004, Vol. 8, No. 2.

[16] M. Norgaard, N.K Poulsen, and O. Ravn, “
New developments in state estimations for
nonlinear systems,” Automatica, vol 36, no.
11, pp. 1627-1638, November 2000.

[17] J. R. Rolia and Kenneth Sevcik, “The method
of layers,” IEEE Transactions on Software
Engineering, Vol. 21, No. 8, pp. 689-700,
1995.

[18] L. Stojanovic, J. Schneider, A. Maedche, S.
Libischer, R. Studer, Th. Lumpp, A. Abecker,
G. Breiter, and J. Dinger, “The role of on-
tologies in autonomic computing systems,”
IBM Systems Journal, v. 43, n. 3, 2004.

[19] H Tanizaki, “Nonlinear Filters: Estimation
and Applications- Second, Revised and
Enlarged Edition,” Springer-Verlag, Berlin-
Heilderberg, 1996.

[20] Murray Woodside, Tao Zheng, Marin Litoiu ,
“The use of optimal filters to track parame-
ters of performance models,” Proc. 2nd Int.
Conf. on Quantitative Evaluation of Systems
(QEST05), Torino, Sept. 2005.

