
Chatbots as Assistants: An Architectural Framework
Adam Di Prospero, Nojan Norouzi, Marios Fokaefs and Marin Litoiu

Dept. of El. Eng. and Comp. Sci., York University
Toronto, Ontario, Canada

dipro@yorku.ca,nojanno@my.yorku.ca,fokaefs@yorku.ca,mlitoiu@yorku.ca

ABSTRACT
Automated text-based or speech-based personal assistants, also
known as chatbots, have been prevalent in several domains in-
cluding marketing and technical support. �rough mainstream
applications, such as Siri or Alexa, their popularity has increased
and we now see them being used in even more domains. Although
the purpose of chatbots varies among domains, there are common
elements that all chatbots share. By identifying these elements,
it is possible to streamline the development of chatbots en masse
and in a structured manner. Additionally, there can be common
challenges in the development of such applications, for example,
how to treat novice versus expert users or how to establish memory
of the conversation. In this work, we propose a reference archi-
tecture for chatbots using concepts from So�ware Product Lines
and Feature Models, where we outline the common elements as
well as the common challenges. Using Watson and Bluemix as the
basic platforms, we also present the creation of two chatbots, for
di�erent purposes, based on this reference architecture to highlight
these commonalities.

CCS CONCEPTS
•Human-centered computing → Human computer interac-
tion (HCI); •Computingmethodologies→Cognitive science;
•Computer systems organization→Distributed architectures;
•So�ware and its engineering → n-tier architectures;

KEYWORDS
chatbots, cognitive assistants, so�ware component architectures

1 INTRODUCTION
In recent years, chatbots have been most prominent at the inter-
section of arti�cial intelligence and social media. A large number
of bots are active on Twi�er [34] and Facebook [37]. �ere is
also a growing number of chatbots active on platforms such as
Amazon Echo with Alexa [4], Google Assistant on Google’s api.ai
platform [1]. To support their development, a number of tools are
already available to enable advanced actions that require an under-
standing of context, �exibility in interaction, and a bot memory
structure. �is leads to a new breed of bots, “Cognitive Agents”,
that augment user capabilities, rather than replace them. In the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CASCON’17, Toronton, Canada
© 2017 ACM. 978-x-xxxx-xxxx-x/YY/MM. . .$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

context of this paper, the terms “bot” and “chatbot” refer speci�cally
to the concept of a “Cognitive Agent”

Despite signi�cant advances in chatbot technology, it is still chal-
lenging to implement Cognitive Agents in new domains. Challenges
range from cognition, for example how to design and implement
di�erent chatbot personalities to address di�erent types of users, all
the way to development and architectural challenges, for instance,
the need to orchestrate and integrate di�erent types of web ser-
vices, user engagement monitoring and improvement, bot memory
management among others.

�e goal of this paper is to outline our experiences, describe some
of the challenges and to propose and prototype a framework that
will encompass the tools, components and considerations necessary
to facilitate and enhance the development of bots that are intended
to operate in distinct domains. More speci�cally, the contributions
of the paper are (a) requirements speci�cation for two bots on
speci�c domains and for a personality service; (b) a product line
architecture for streamlining the development of bots for several
domains; (c) prototype implementation of the architecture and a
discussion of implementation and research challenges.

�e remainder of the paper is as follows. In Section 2 we de-
scribe the requirements for two sample bots and their particular
abilities, which will help us motivate the abstraction of the com-
mon development framework. Section 2.2 illustrates the importance
of identifying user personalities and the value of formulating the
bot’s own personality and adapting its output to appeal directly
to the current user. Section 3 explores the architectural elements,
challenges and tools common across the di�erent cognitive agents.
While the bots share a common platform, each instance incorpo-
rates components only necessary for a particular bot. Section 4
describes the commonalities and variations of the bot feature model,
and provides details on how to capture the various features of each
bot. Section 5 focuses on particular technical choices and design
challenges for the two bots. Section 6 discusses concepts and ideas
that we are looking to implement, moving forward. Section 7 out-
lines the related work that motivated and guided the development
and investigation of the bots.

2 REQUIREMENTS FOR A COGNITIVE
AGENT PLATFORM

To motivate our cognitive and development framework, we begin
with two case studies and highlight their requirements. �e fol-
lowing sections present an overview of the requirements for two
types of chatbots and the requirements and characteristics of a
“Personality” service needed for both case studies.

2.1 Case Studies
2.1.1 YU Student Services Bot. �e YU Services bot is intended

for York University students with disabilities. �e goal of the bot

is to inform students of available services, resources, and tools
they might need. Since each student has an individualized learning
approach and method of communication, a requirement is to imple-
ment a �exible information delivery style. For example, in the case
of a student who is blind, the bot can interact with speech instead
of text and visual cues. Another important consideration is student
data con�dentiality. If a user were to provide YU Services bot with
con�dential information, it must be stored securely, and not acces-
sible by other users. As a chatbot, this application complements
in-person assistance by providing a service that is convenient and
aimed at smaller tasks that do not require much expertise.

2.1.2 System Administrator Minion. �e System Administrator
Minion (SAM) acts as an interactive alternative for cloud manage-
ment services. Traditionally, administrators would use multiple
tools to monitor their systems, retrieve data required to make in-
formed decisions, and subsequently apply corrective actions to
those systems. SAM can be con�gured to handle the busywork
involved in ge�ing the necessary data. Users can ask SAM to pro-
vide precise information that is �ltered and prepared in the format
they desire, including graphs and charts. Users can make adjust-
ments to their systems through SAM, such as increase or decrease
resources to keep systems running smoothly. �e goal of the bot is
to integrate management service and act as a proxy for the actual
IT sta�.

2.2 �e Personality of Cognitive Agents
�e personality of each cognitive agent plays an important role in
engaging the users. To successfully interact with the users, each
cognitive agent not only requires to produce logically sound re-
sponses, but those responses also need to emphatically match with
each of the user’s sentiments. In other words, the cognitive agent
should be able to “feel” the user’s input and adjust its subsequent
response to the user’s emotional tone. In order to endow our cogni-
tive agent with a “faculty of feeling”, the agent requires to possess
a personality [28]. �is approach to the personality of our bot does
not entail it to constitute a singular core, or a singular “self”. Rather,
in order to bridge the possible gaps between the faculty of feeling
and the other functions, the personality of our cognitive agent re-
sides in a set of procedures and functions that are implemented
along the other mechanisms that handle the responses. In our
model, the personality of a bot has a static component, which we
call the principal self, and a dynamic component, which we call the
adaptive self. �e la�er is further divided into three subcomponents
that �ne-tune each response according to (1) the user’s personality
type, (2) the user’s individual needs, and (3) the user’s real-time
feedback.

2.2.1 The Principal Self. Let us begin with the static aspect of the
cognitive agent’s personality. �e main purpose of this component
is to create a sense of coherence in the responses that the cognitive
agent creates, and to make sure that each response adheres to a set
of standards based on the agent’s role and responsibilities. �us,
the principal self is determined at design time based on the purpose
of the bot and the requirements around its function. In the case
of YU Services bot, for instance, the principal self of the agent
should take into account the traits that are generally expected

of a counsellor or a helpdesk agent. For example, the cognitive
agent should be empathetic -but not emphasize the disability of
the students- as well as informative and solution-oriented. �e
principal self creates a sense of stability and acts as a core around
which the dynamic aspects of the agent revolve, so the agent’s
personality would not be completely relative to the personality
of the users. �is way the users know what to expect from the
bot, they become more engaged and eventually feel comfortable
with using an automated service. �e principal self should raise
user satisfaction because most users have expectations from an
agent, according to the agent’s role, that should be addressed by
the agent regardless of the user’s speci�c personality. �e way to
apply the principal self is to create a list of standard personality
traits, and have them in mind when generating the generic and
neutral responses that are implemented in the cognitive agent’s
dialog �ow. It is important to include key stakeholders in the
requirements gathering phase. For example, counselling sta� for the
YU Services bot, and System Administrators for SAM can provide
design guidance concerning common statements and a response
tone that is acceptable based on the domain context.

2.2.2 The Adaptive Self. Similar to a person who adjusts her
tone according to her targeted audience, each cognitive agent would
also require to adjust its responses according to the personality
of the users. Our goal is to maximize the ability of our bot to
communicate and be engageable. �erefore, our bot needs to be
adept at recognizing the personality of the end-users and adapting
to it. Humans perform this mechanism intuitively, when their tone
and language di�ers from one person to another according to their
discursive situation and their relation to each other. Each cognitive
agent, similarly, will categorize the personality, needs, and the tone
of each user from the conversation and adjust to them according to
the procedures explained below.

2.2.3 Adapting to User’s Personality Types. Our model here fol-
lows the approach of Horzyk et al. [23] on man-machine interac-
tions. In that work, the authors follow a psycholinguistic approach
to recognizing human personalities, which aims to categorize peo-
ple’s personalities based on their choice of words as well as other
textual pa�erns in their sentences. �e authors present a list of
eleven main personality types and the metrics for recognizing each
one. For each human personality type (HPT), there are speci�c hu-
man personality needs (HPN) that the cognitive agent needs to take
into account while producing the responses. In order implement
that model, we utilize Watson’s Natural Language Classi�er [5],
which uses machine learning algorithms on short text inputs in
order to classify each input based on the metadata. Once we input
the textual pa�erns and word choices for each personality type,
the service will go into “training mode” to learn those categories
and subsequently, recognize them while interacting with the users.
Vertical operators are used to assess the possibility of each per-
sonality category, and during the interactions, neutral responses
adjust to the most plausible personality type to include the speci�c
psychological needs for each type.

2.2.4 Adapting to User’s Needs. �is component is speci�cally
useful in YU Services bot, which will interact with students with

2

disabilities. It is crucial to create responses that take the user’s dis-
ability into account. Since the cognitive agent should not emphasize
the user’s disability or mention it directly without the user’s ref-
erence, it should hypothesize the disability through: (1) the user’s
inquiry about a particular technology that is associated with a spe-
ci�c disability, (2) the user’s explicit reference to a disability, or (3)
hypothesizing the type of disability through the user’s interaction
with the bot. Responses vary according to the type of disability.
For instance, in the case of a user with ADHD (A�ention De�cit
Hyperactivity Disorder), responses should be short and concise.

2.2.5 Adapting to User’s Tone. During their interaction with
the chatbot, users may express certain feelings towards the bot or
the conversation. Regardless of each user’s personality type and
disability, the bot should reply to those feelings in an appropriate
manner. In order to do so, we use Watson’s Tone Analyzer [7],
which detects each response’s sentiment and its intensity. If the
intensity of an expressed feeling reaches above 50 percent, the chat-
bot will a�x a standard sentence to the beginning of its response
to address that feeling. If for instance, the user feels frustrated, the
bot may add the following sentence: “I understand that you are
frustrated, [user’s name].”

2.3 Eliciting and Validating Content with
Stakeholders

When initially planning the design of a chatbot, it is essential to
include key stakeholders in the process. One approach is to hold
meetings with potential users, along with the group or organization
that is most familiar with the user base. �ese sessions can be
organized and delivered by the development team themselves, or
by an external group who specializes in holding such sessions [20].
�e sessions could be used to determine the types of content the
users would inquire about, what the users overall goals would be
for using the bot, and how the users would most likely interact
with the bot, such as text-based methods, or by using speech-to-text
technologies. Once the exploratory phase is complete, and the bot
is able to communicate with the user, the next step is to validate
the statements that the cognitive agent is making. For example,
in the case of the YU Services bot, it is important to include the
sta� from the Disability Services O�ce in this process. �e goal
is to con�rm that the bot’s statements are in line with the tone
and content that sta� would typically use. It is also important to
validate with students who would be using the bot. �e answers
must meet the expectations of students before continuing with the
development process.

An important takeaway from this step is to ensure that the
objectives of the chatbot, and the objectives of the users do not
con�ict, and how to elegantly handle con�icts when they arise. For
example, during the early steps of the exploratory phase, it was
mentioned that there may be “high risk” students who are seeking
help that the bot may not be able to provide. In cases like these,
it would be important to o�er the student a direct line to a 24-
hour support line 1. In this case, the objective of the bot - to assist
students autonomously - comes in con�ict with the student-based
objective - their safety. �e needs of the student should override

1h�ps://good2talk.ca/

the objective of the bot. For each bot, identifying the possible users
and including them in the process early on is bene�cial, but the
process is iterative and should happen throughout the development
cycle.

3 REFERENCE ARCHITECTURE FOR
CHATBOT APPLICATIONS

Having covered the cognitive aspects of chatbots, we move on to
discuss the development and architectural considerations. �e pro-
posed architecture, as seen in Figure 1, is a three-tier architecture
with a user interface (UI) component, the bot application core, a
personality processing module, and external data sources and ser-
vices. Practically speaking, the core consists of the services relevant
to chatbot applications in general and which are contained in the
development platform, while external sources and services are rel-
evant to the domain of the speci�c application. Within the same
tier, multiple modules or services can be used depending on the
speci�c domain of an application. For example, the Text-to-Speech
module is implemented for the YU Services bot but not for SAM.
�is is according to a so�ware product line approach [35], where the
available modules are considered assets and the architectural tiers
consist of variability points. Such an approach can easily guide the
development of various bots by identifying viable products from a
feature model [15]. So�ware product lines provide the structure to
develop multiple products using a core asset base. �e following
sections describe individual features. Section 4 provides more detail
on how these features are either common across both bots, or are
variable and interchangeable.

Figure 1: Reference Architecture for chatbot applications.

3.1 User Interfaces
Naturally, every bot may use a di�erent UI. It is important for the UI
to suit the users in the target domain. Development platforms, like
IBM Bluemix, o�er a variety of UI modules and certain orchestration
tools, like Node-RED [19], allow the capability to switch between
UIs seamlessly with li�le or no impact to the rest of the application.
�is makes it easy to suit the needs of each application, even if
these change a�er deployment. For example, SAM initially used a

3

browser UI, but having users interact with SAM through Slack [39]
was ideal for team management.

3.2 External Services and Sources
Depending on the purpose of the chatbot, every application may
have a need to access domain speci�c data sources or services.
�ese sources can either provide information that cannot be in-
cluded in the bot at design time, or they can be used to provide
dynamic content for the bot and improve its human-like behavior
and subsequently increase user engagement. For example, the YU
Services bot can access content about university services, even if it
is not within its capabilities or when the response con�dence is low.
Similarly, SAM can access the cloud monitoring services to provide
runtime information about the managed system on demand. In
most cases, the application core can connect to external sources via
REST web service calls.

3.3 Chatbot Application Core
�e core contains the logic of the bot and is implemented with
a combination of available platform services, like conversation
services. �ese services complement the basic dialog, improve user
experience and provide alternative means to interact with the bots.
For example, Text-to-Speech service [6] transfers wri�en text into
spoken speech. Conversely, Speech-to-Text service [11] takes a
user’s spoken statement and converts it to text. �e text is then
passed into the application core and sent to the other services.
�ese services are particularly useful when the data is in the wrong
format. For example, a service requires the data to be in a text
format, but it is currently in an audio/speech format.

�e core also contains the dialog logic itself, which handles the
progress of the exchange between the bot and the user, as well
as the content of the bot’s statements based on external stimuli.
Processing steps handle bot memory (i.e. keeping track of the
user-provided context).

When the bot is not su�ciently equipped with the content to
answer a particular question, it will not provide an incomplete re-
sponse. Instead, the core can call the Retrieve and Rank service [10].
�is service connects with external data sources and �nds relevant
information. �e service returns a ranked list of documents or
data sources back to the core. �e application, then, can present
the information for which it is most con�dent, and leave the �nal
choice to the user.

3.4 Text Analysis Services - Personality
Processing

�e chatbot core relies on services provided by the personality
processing tier. �e personality processing uses analysis services,
combined with custom functionality, in order to provide the user
with an experience tailored to their needs. Custom components
are responsible to preprocess user statements as they go through
the dialog and before being sent to other services. Once results are
returned from a service, the responses pass through custom post-
processing steps and are sent to the user. Processing steps modify
statements between the principal and adaptive self. For example,
the Tone Analyzer can detect the user’s tone from wri�en text and
then output the analysis to the custom processing steps. �is tone

information is used to modify the bot’s response accordingly. �e
Natural Language Classi�er processes user input and determines
the intent behind statements so as to bolster the data, which is then
used when determining a suitable response.

In our implementation, all of the above mentioned services are
from the Watson suite, which is indicated with a “(w)” in Figure 1.
�e bots, however, can utilize non-Watson services, such as the
Cloud Automation Manager [26] service. �e Cloud Automation
Manager is used by SAM to connect to, monitor, and scale cloud sys-
tems. As the bots mature in their development, additional services
can be added via Node-Red.

3.5 Dialog Service
Our implementation of chatbot applications rely on the Watson
Conversation [27] service. Here is where the developer can de�ne
the �ow of the dialog between user and bot and the content of the
bot’s response. In this section, we outline the basic elements of the
service as well as some processes we de�ne to build the dialog.

3.5.1 Establishing Entities and Intent. Consider typical conver-
sation �ow with a human assistant, and how that interaction maps
to components in the Conversation service. In general, an assistant
is able to identify a purpose of the conversation and continue the
interaction. If someone were to ask, “Where is the meeting”, the
assistant implicitly understands the purpose is to �nd a location.
Conversation employs the concept of “intents” [25] to identify the
purpose of a discussion. In the Conversation service, an intent is
the purpose that can be inferred from the user statement. With
SAM, an intent might be “whatTime”, which indicates the user
wants to know the time of an event. A sample user statement could
be, “When did the load balancer crash?”. Even though the user
does not explicitly state “what time”, the system still recognizes the
statement as having the “whatTime” intent.

Another aspect of conversation with a human assistant is the
topics being discussed. With the statement “Where is the meeting”,
the assistant infers that the current topic is, “meeting”. Watson iden-
ti�es topics as “entities” [24]. With SAM, example entities would
be component names, for example CPU, virtual machines and so
on. Much like intents, entities are de�ned within the Conversation
service. All entities reside in an entity group, which is made up of
entity values and any possible synonyms for each entity value.

3.5.2 Conversation Flow. Conversations consist of a back-and-
forth �ow between the people involved. Since the scope of these
bots is limited to conversations between a person and an assistant,
they generally follow a structured �ow, but unexpected cases must
be handled. With Watson Conversation, it is possible to guide the
user along the conversation �ow and direct the user into a struc-
tured path, while still handling any tangent ideas. Conversation
�ow in Watson Conversation is handled by creating a suitable dialog
structure [8].

�ere are two main considerations when implementing a dialog
structure. �e dialog should a�empt to get the user to explicitly
state their intent. �e dialog should also elicit the precise aspect
that goes along with the declared intent. For example, if a user
asks, “Where is the location?”, with no prior statements, the bot
should follow up with “Which location are you referring to?”. �e

4

dialog structure must handle unstructured conversation �ow, such
as when the user jumps between unrelated topics. �is is done using
the Jump To [12] function in Conversation, which skips complete
branches, jumping to a speci�c dialog node. While the �ow itself is
highly structured at design time, the reality is that users may be
unpredictable. �e dialog structure can take the form of a tree, but
in the case of the bots outlined in Section 2, it resembles a network.
A network structure is capable of handling the unpredictable nature
that will arise during actual use.

3.5.3 Establishing Memory. Entities, intents, and dialog struc-
ture only work if there is a system to keep track of the values at any
point in the conversation. In a conversation between two people,
the question “Where is it?” has no intrinsic meaning, the person
must have some prior context to understand the question. In an
actual conversation, this is handled by the memory of each person.
Since the Conversation service is stateless, memory is handled by
the application itself, which must depend on context variables [9].
Context is any value that the developer deems necessary to store
and track between calls to the Conversation service. Consider the
question, “Where is the meeting”. For this �rst turn of the con-
versation, the application might capture the value of “topic =
meeting”. On the next turn, when the person asks “When is it?”,
the system can see that in this instance, “it” refers to the value
currently stored in the topic context. �e user can continue to ask
questions without explicitly referring to “meeting” and the system
can recognize the context. Context values - stored in JSON �les -
can be added, removed and modi�ed via the application, or Watson
itself.

At times, the system needs to collect multiple context values,
and if the system is missing context, it should redirect to the dialog
node that is capable of collecting that context. In the YU Services
bot, if a user asks to make an appointment to see a product, the
system must know the name of the product, as well as the desired
date. If the system is missing any of these values, the bot should be
able to collect missing values by soliciting the values from the user.

3.5.4 Suitable Data Structures for Context. Consider cases where
the user asks questions about multiple topics. It is important for the
bot to keep a history of the topics, and for the bot to have a sense
of which topic the user is currently referring to. For an illustration
of the problem, see Figure 2

Figure 2: Example of a typical dialog

In Figure 2, the user is asking about an assistive technology
application (AT app) called “Kurzweil”2 and also mentions another

2h�ps://www.kurzweiledu.com/default.html

AT app called “Text Help”3. Even though the last app mentioned
was Text Help, �e bot should still provide info on a demo of
Kurzweil, not Text Help. �e bot should recognize that the main
focus is on Kurzweil, and that the student is asking about Text Help
only to be�er understand what Kurzweil is. Since there is room
for confusion, the bot also asks for con�rmation before actually
providing the content. �is may also help create a natural �ow
which keeps the user engaged and active in the chat.

In order to store and track a history of contexts, a stack data
structure is used. As new topics and context are requested by
the user, they will be added to the stack. �e items in the stack
can be removed when all possible branches for a given topic or
context are exhausted. For example, the YU Services bot has a
branch for student technology. Within this branch, there are four
nodes that deal with di�erent aspects of the technology available.
Once each of these nodes have been traversed, the bot can infer
that the student does not have any remaining questions, and the
“technology” context can be popped o� the stack.

3.5.5 System Prompts. �e bots provide guidance by prompting
users with statements they can enter. �is gives �rst-time users
an idea of what they can ask. Klopfenstein et al. [31] describe the
importance of “onboarding”, whereby the user is given direction on
how they can interact with the bot, what statements are understood,
and the range of topics that the bot can handle.

One approach to increase user satisfaction is to also accommo-
date advanced users, or users who do not necessarily need to rely
on the prompts provided by the bot. �ese users can ignore the
prompts and enter exactly what they are looking for, without hav-
ing to go through every step of the dialog branch. For example, if a
user provides all of the necessary context in a single statement, the
bot does not need to traverse all of the intermediary dialog nodes
that collect individual context values.

4 DEFINING VARIABILITY AND
COMMONALITY

Along with the architecture, we also frame the design and develop-
ment of chatbots using Feature Models. A feature diagram is a useful
visual on many fronts. First introduced by Kang et al. [29], a feature
diagram is a simple and clean way to represent variability and com-
monality of a so�ware system. A feature diagram represents both
the common and variable features, and their dependencies [15].
�ere are multiple notations and approaches for creating a feature
diagram. �e feature diagram in Figure 3 is based on the notation
proposed by Czarnecki et al. [15], which was built on the approach
of the Feature-Oriented Domain Analysis (FODA) method [29]. We
also referred to a later work by Czarnecki [16], which modi�es the
feature diagram by integrating a number of additional notation ex-
tensions. We opted to go with Czarnecki’s initial notation method
as it was able to capture the variability of the chatbot product line
without any ambiguity, though the feature diagram of our chatbot
applications can be modi�ed to include additional notation such as
cardinality [14].

Another strength of a feature diagram is that it is useful for both
the development team, and also as a tool for explaining the product

3h�ps://www.texthelp.com/en-us/
5

Figure 3: Feature diagram of the chatbot platform

to stakeholders. �e diagram is straightforward and easy to under-
stand a�er a short explanation of the notation. �e root node at the
top of the diagram is the concept node, which describes the general
idea of the system. Each box below are features and subfeatures.
�e features and subfeatures are connected by lines with circles at
their ends. �e solid circles indicate that the feature is mandatory.
�e empty circles indicate that the feature is optional. �e dark arc
between multiple subfeatures indicate that the particular feature
set contains or-features. With a set of or-features, any non-empty
set is possible, that is, there must be at least one feature selected
from the set.

Our feature diagram for chatbot applications has the following
qualities. �e concept node encompasses chatbots in general. In the
case of the UI features, at minimum one UI must be chosen between
a browser, mobile app, or Slack, but all three can be integrated as
well. �e same applies for the external sources. Since the external
sources feature is an empty circle, the whole group is optional. If the
group is chosen, at least one external source needs to be integrated.
Any number greater than one can also be integrated, depending on
the bot being developed. �e core contains two mandatory features;
Dialog and Personality. �ese must be implemented in each bot
instance. �e other nodes are not mandatory and might only be
implemented in one of the two bots, though they are not restricted
from being implemented in both. Within the Dialog feature set, En-
tities and Intents are mandatory, whereas Memory and Context are
optional. While memory and context are important, it is possible
to implement a basic bot without these features. �e subfeatures of
the Principal Self node are connected by an arc. �e arc denotes
that only one of the features can be chosen. In this case, only two
primary selves are in development, a submissive self for the System
Admin bot, and Empathetic self for the Student Services bot. Addi-
tional selves can be added to the feature diagram when other bots
are incorporated into the product line. �e Adaptive Processing
node is optional and contains the Tone Analyzer and the Natural
Language Classi�er. A�er the Tone Analyzer and Natural Language

Classi�er analyze the user statement, the Adaptive Processing com-
ponent functions in a similar way to the decorator design pa�ern in
object oriented programming. It does this by injecting pre�xes and
su�xes to the bot’s response, e�ectively customizing the reply back
to the user. While both bots implement this Adaptive Processing
feature, additional bots added to the product line may only make
use of the principal self.

It is important to note that this is a feature diagram and not a full
feature model. A feature model includes the diagram, along with
additional information such as feature descriptions, speci�cations
for binding sites, binding modes, details about stakeholders, users,
customers, and other details [16]. �e plan for the near future is to
also complete the future model for the chatbot architecture.

5 IMPLEMENTATION OF THE FRAMEWORK
A closer look at both bots illustrates our experience implementing
the proposed framework, and the particular challenges we faced.
�e following bot-speci�c components and development activities
are built on the modules found in the reference architecture and
feature diagram. Each bot was built using IBM Bluemix as the plat-
form, along with the Watson Conversation service. �ey share the
use of a common development tool, Node-RED. Beyond these tech-
nologies, each bot incorporates unique features via other services
available in Bluemix.

5.1 YU Student Services Bot
�e YU Services bot will be housed in the Assistive Technology Lab
on the York campus as a physical kiosk. It will allow students to
interact with the bot and have sta� on site in case they run into any
di�culties. �e bot will also be available to students via any device
with an Internet connection and browser. Our goal is for the kiosk
to introduce the students to the idea of using a bot, and then have
them transition into accessing it on their own devices. �e purpose
of the bot is to handle the tasks that would typically inundate sta�.
�e goal is to provide students with instant access to information
that might be time consuming to track down by other means, such

6

as making an appointment with a sta� member, or searching the
web.

�e YU Services bot builds upon the reference architecture and
is tailored to a range of student abilities. Figure 4 - a modi�cation
of Figure 1- depicts the speci�c features we implemented in the YU
Services bot. In the �rst prototype, the UI is browser-based and
uses HTML and Javascript. �e UI must be simple and unclu�ered,
with a high contrast color pallet and large sans-serif fonts for users
with low-vision and reading-based exceptionalities. We opted for a
web UI as the stock interface, since students may prefer their own
browsers with specialized accessibility features4 or extensions5 that
they feel comfortable using. �e bot incorporates Text-to-Speech
service for students with dyslexia or other reading exceptionalities.
Users who have challenges with typing can use the Speech-to-Text
module. Both are available through Bluemix and are used to make
the bot completely accessible.

�e YU Services bot changes between an Empathetic personality
at its core, to other personalities that meet student learning styles
and personality types. �is process starts with the Tone Analyzer,
which infers information about the user questions. Bot response
is augmented to match the user’s detected tone. �e Natural Lan-
guage Classi�er service parses out possible intentions of the user,
along with the speci�c entities in their statement. Once the entities
have been parsed, a suitable dialog path can be traversed in the
Conversation service.

�e bot adapts its output to meet the needs of the students. Con-
sider students who prefer a high level of detail in their responses.
�is can be inferred by the number of follow-up questions a user
asks. Once detected, the bot should adapt to provide more details
for subsequent questions. Although the bot will not ask students
to state their disability, students may disclose such information.
�e bot uses disclosed information to adapt its responses. While
the bot’s principal personality is suitable for a wide range of users,
the adaptive personality modi�es responses to increase user sat-
isfaction. It will be important for the bot to use natural language.
Murgia et al. [33], conducted an experiment where a bot answered
questions on StackOver�ow, �rst with a human name, and again
where it identi�ed itself as a bot. �e experiment showed that
users were more likely to accept responses from the bot when it
identi�ed as a person. Conversely, Edwards et al. [17], found that
a Twi�er feed managed by a bot was considered by users to be a
reputable source of information. If the YU Services bot can convey
its responses in a natural tone, it should increase user acceptance.

Within the Conversation service, the bot is structured around
content areas. Each content area has dialog branches that further
specializes into subgroups. One of the popular content areas is
assistive technology (AT) available for students. �is branch has
four topics that are popular with students; availability of AT on
campus, downloadable demos, appointment booking, and general
information. For each area, the bot calls external data sources such
as the York University website or AT vendors and returns the latest
information. In cases where the external sources have publicly
available APIs, the data can be queried and stored. In other cases,
the information is scraped from the website. When a topic is not
4h�ps://support.mozilla.org/en-US/kb/accessibility-features-�refox-make-�refox-
and-we
5h�ps://addons.mozilla.org/en-US/�refox/tag/colorblind

recognized, the bot calls the Retrieve and Rank service and returns
a ranked search result to the user. �e goal is to meet the user
needs with an exact answer to their question. If this is not possible,
a ranked result is a strong alternative to simply stating that the bot
does not have any information.

While the bot is designed speci�cally for York University, the
data can be modi�ed to be used by other universities and colleges,
as well as any institution that provides services to persons with
disabilities. In practice, migration to another institution would
involve changing the data sources and the entities, but li�le else.

Figure 4: Architecture Diagram showing only the features
implemented for the YU Student Services Bot.

5.2 SAM: A Systems Administrator Minion
SAM is a bot designed to act as an intermediary between a systems
administration team and the systems they manage. SAM di�ers
greatly from the YU Services bot in terms of its goals and users, but
both share the common platform. It was important for us to design
two bots that di�er greatly on a super�cial level, but share a number
of commonalities in terms of their architecture. �is allowed us
to get a sense of how to e�ciently develop the bots using a so�-
ware product line approach. Figure 5 - a modi�cation of Figure 1-
shows the speci�c features we used to implement SAM. �e user
interface is Slack, as opposed to the browser interface of the YU
Services bot, since it is a popular tool among system administrators
and an acknowledged collaboration tool. SAM is integrated with
IBM’s Cloud Automation Manager (CAM) to scale the components
of each system in its portfolio. CAM uses Terraform templates6

that specify components needed for an application. A Terraform
template lists out all components a so�ware system requires to run.
Templates include items like virtual machines, storage, virtual pri-
vate networks, and other infrastructure components. Using CAM,
it is possible to implement thresholds on performance indicators for
an application, and deploy new templates to modify components
and keep applications within acceptable performance standards.
SAM can be con�gured to automatically act when a threshold is
passed, or when an alert is triggered. SAM provides data to the

6h�ps://www.terraform.io/
7

systems administrator in the form of graphs, charts, and summary
statements.

Figure 5: Architecture Diagram showing only the features
implemented for the SysAdmin Bot - SAM.

SAM’s conversational style is similar to a command-line interface
as opposed to a human-to-human chat. Klopfenstein et al. [31]
describe the bene�ts of keeping natural language to a minimum,
such as reducing misunderstandings. Users type short commands
that SAM understands. SAM accommodates both advanced and
novice users. To help accommodate novice or �rst time users,
SAM will include prompts in its statements, while advanced users
can choose to ignore these prompts and go directly to the desired
branch of the chat. When considering the cognitive aspect of SAM,
outlined in Section 2.2, we took a di�erent approach than what
we initially did in the YU Services bot. With SAM, the goal is for
personality to primarily manipulate the verbosity of responses, and
the types of data output the users prefer. �e principal self consists
of concise statements that provide only the essential information.
�e principal self will be modeled around the typical statements you
would �nd in the output of a system log, or command line interface.
�e adaptive self allows for detailed statements, or speci�c outputs
that some system administrators may prefer. For example, if a
system administrator constantly requests usage stats be forma�ed
a certain way, the bot adapts to meet the user needs.

6 FUTURE IMPLEMENTATION AND NEW
FEATURES

�ere are a number of features in the early phases of conceptu-
alization. �ese ideas may hold value for future iterations of the
bots. As described in Section 3.5.4, each of the bots will keep track
of the context within a given session. �e chat topics that one
user experiences will be di�erent from any other user. Each of the
sessions will be treated independently, and the session memory will
be cleared once the session is completed. But there is also another
level of data storage that has value in its own right. �e bots could
potentially store persistent data that is kept across user sessions.
Having a mechanism for persistent data would make it possible for
the system to learn and adapt, based on user input.

�is would involve an additional database layer in the architec-
ture. Security and privacy in this data layer would be of utmost
importance, since it would hold con�dential user information. A
persistent data layer would allow for an experience that users can
revisit and build upon. For example, a user could bookmark results
from their session, and access those results on subsequent visits.
In SAM, a user could store past graphs that were generated and
run comparisons over time. Persistent data also provides the basis
for customized user experiences that are modi�ed and tailored to
particular user needs, as outlined in Section 2.2.

With this being said, there are also potential drawbacks for
storing and using persistent data. Users may want their sessions to
be kept con�dential, and they may not want to create accounts that
store their data. In the case of the YU Services bot, students with
disabilities may not want details about their disabilities, functional
limitations, or even the services they use, to be stored on the system.
In this regard, persistent data might hinder user acceptance, or
might pose as a barrier for certain users. To ensure that the bot
is embraced by the widest possible user base, users will not be
required to create an account. If users do not want to store their
data, they can simply use the bot anonymously.

It would be interesting to include a method to gather user data
that can be used to improve the bot’s answers and available infor-
mation resources. For example, in Figure 6, the YU Services bot can
explicitly ask the user for their opinion about their favorite univer-
sity resources. �e student’s answer would be cleaned, stored, and
used by the bot to improve future interactions with students. �is
data could be used to help determine the con�dence of the answer
the system returns, or it could be used to create new entities and
intents altogether.

Figure 6: A future feature that integrates knowledge from
users into chatbot resources

�e approach demonstrated in Figure 6 could be applied to all of
the chatbots that share the common platform. Northrop et al. [35]
explain that although some components and design decisions are
initially speci�c to one product, taking an iterative approach with
so�ware product lines allows developers to propagate features to
other products.

7 RELATEDWORK
To be�er inform the decisions made during the development of
the two bots, a number of alternate chatbots and platforms were
investigated. �is investigation helped gain an understanding of
what features are popular and how users feel about chatbots in
general. It also helped gaining insight to the tools other platforms
o�er.

Facebook’s Messenger app is home for a number of popular
bots [21]. A novel UI design choice among Facebook bots is the
ability to return responses in the form of cards on a rotating carousel.

8

Take for example the Ticketmaster bot [38]. Concert results are
returned as individual cards on the carousel. Each card includes
bu�ons for users to purchase tickets, view more info, or share on
their media feed. Users can swipe through each of the cards to
�nd the concert listing they are interested in. �is is a visually
appealing design choice that also has practical bene�ts.

Another bot, Woebot, is an automated counselling agent that
helps users monitor their mood and discuss mental health issues
through Facebook Messenger. In a randomized controlled trial, Fitz-
patrick et al. [18] found that Woebot could in fact be an engaging
way to provide therapy to users. �is study lends credence the no-
tion that chatbots can be used for complex and sensitive tasks such
as counselling. Another interesting aspect of Woebot is that while
users get the �rst 14 sessions free, they must pay a subscription
fee for continued use. It will be interesting to see if this is a viable
approach for monetizing chatbots.

Bots on Facebook Messenger can be developed using the Wit.ai
platform [13]. Wit.ai includes functionality to handle natural lan-
guage processing, as well as speech-to-text and text-to-speech con-
version. Much like Watson, Wit.ai also requires developers to de�ne
entities that are picked out of the user statements.

Amazon o�ers a suite of tools for bot development, including
Lex for creating conversational interfaces [36]. A unique aspect of
Amazon’s chat bots is the ability to integrate with their hardware
o�erings, such as the voice-only Echo, and the new voice and
screen-operated Echo Show. Lex allows developers to de�ne the
user intent. Along with intents, Lex uses a slot system for intent
parameters. When users are engaging with the bot, it will prompt
them to enter values for each slot that was de�ned for a given
intent.

Google Assistant, based on api.ai [1] includes a “Smart Reply”
functionality, which is an innovative design choice that provides
users with shortcuts to bypass typing or speaking their response.
Essentially, these are responses that are automatically generated for
the user. For example, if the bot is displaying today’s weather, the
user can choose from a number of smart responses, such as “show
me the 3 day forecast” or “what is the humidity index for today?”.
While this is a convenient feature that may work for some bots,
there are practical reasons for requiring users to either type or speak
their statements. In our case, requiring users to provide their own
answers will be bene�cial for two reasons. For one, it doesn’t limit
the user’s response to a small number of stock statements. More
importantly, since their responses will be used to analyze the tone
and adapt the bot’s statements, the more information a user enters,
the more of a customized experience the bot can provide. Much like
Facebook’s Wit.ai, and Amazon’s Lex, Google’s api.ai development
suite also centers around entities, intent and context. A notable
feature of api.ai’s entity system is the ability to add sub-classes of
entities that the bot can recognize.

Besides bots and respective development platforms, this work
also relates to the importance of personality aspects in this type
of applications. Horzyk et al. [22] consider the business value of
adapting bot responses to suit the personality traits of the current
user. By using language that appeals to the user, they found that
it is possible to increase user satisfaction, thereby increasing sales
�gures. Falling under the component of “adapting to user’s person-
ality type,” this approach becomes an integral aspect of our model

for the personality of our cognitive agents. Our model for person-
ality of cognitive agents, however, takes into account a broader
spectrum of static and adaptive factors, in order to induce a more
natural �ow of conversation.

Bos et al. [3] outline an approach to take when evaluating dialog
techniques. While the paper was wri�en in 1998, well before the in-
ception of the bots active online today, their concepts are still valid
and relevant. �eir work asks important evaluation questions that
developers can use to gauge how well their bots handle di�erent
categories of questions. �is article informs the types of questions
any bot should be able to handle, and illuminates potential limi-
tations, or areas of improvement, that all bot developers should
consider. �e authors propose a checklist called “Trindi”, which is
composed of 12 yes or no questions that can be used to evaluate a
bot’s dialog model.

Kethuneni et al. [30] describe a personal health care assistant bot
that exists in the virtual world Second Life. �eir work proposes
a virtual bot that follows around users in a game environment,
o�ering suggestions and personal healthcare advice while the users
are logged in. However, their proposed bot would only exist in the
con�nes of the game. �e bots we propose take this core idea and
leverage the convenience of mobile technology such as cellphones
and tablets, allowing the virtual bot to exist in a physical world.

Klopfenstein et al. [31] introduce the concept of “botplications”,
which look at bots as an indication of a possible paradigm shi� that
will impact how we currently conceptualize mobile apps. �e paper
explores the advantages of bots over traditional applications. Some
of the concepts include bots as “threads”, guiding the users through
the conversation �ow, and the value of keeping a chronological
log of past conversations. �is is a valuable concept for the bots
covered in this paper, speci�cally SAM, where multiple systems
can be monitored from a single application. In regards to the YU
Services bot, threads would be an interesting concept to explore
for students who choose to create an account and return to the
bot multiple times. �ese students would rely on the information
stored in their pro�le, and would be gathering useful data from
multiple sources.

Bin et al. [32] explore the use of bots for DevOps. �eir article
is an important starting point for understanding how bots can be
used to manage systems. �eir paper also includes surveys that
provide insight into other ways technical teams are using chatbots.
Some notable uses include team and task management, customer
support, and deployment support.

�e tenets of a so�ware product line are de�ned in Northrop et
al. [35]. �e article focuses on essential activities including core
asset development and product development, While the tenets are
applicable to so�ware development in general, it will be interest-
ing to apply this framework to bot development in particular. Van
Grup et al. [40] explore the so�ware product line concept of variabil-
ity. We look to apply this to the development of multiple chatbots
using a shared platform. Some notable variability points in the plat-
form relates to the choices of user interface, the addition or absence
of IBM services available through Bluemix, and the behavior of the
principal self in the personality processing component.

�ere are a number of works focused on modeling the variablity
and commonality in so�ware product lines. Benavides et al. [2] pro-
vide a thorough survey on the automated analysis of feature models.

9

While the article is primarily concerned with the computer-aided
extraction of information from feature models, it is a useful entry
point to understanding the essential concepts of feature modeling.
Feature modeling was �rst introduced in Kang et al. [29] in 1990. In
2000 Czarnecki et al. [15], built upon Kang’s original concepts and
extended the notation. �is is the notation used to document the
features in this paper. Czarnecki [16] further extended the feature
modeling notation to include cardinality, amongst other changes.

8 CONCLUSION
In this work, we share our experiences with developing chatbots
following a so�ware product line perspective. We propose a refer-
ence framework for chatbot applications, which aim to function as
virtual assistants. We claim that such an abstract development and
architectural framework, by taking out the domain speci�c details,
can generally facilitate and streamline the development of such ap-
plications en masse. �is will also enable the transfer of knowledge
and expertise between chatbot developers. We demonstrate the
usefulness of such a framework in the development of two di�erent
chatbot assistants; a university services bot and a systems adminis-
trator assistant. �e ultimate goal of the work is to implement the
reference framework into a development platform to systematically
guide and aid the development of such applications. �e platform
would provide the tools necessary to implement notions such as
cognitive processing, personality adaptation, external source access
and dynamic dialog structure, the importance of which we have
identi�ed in this work.

REFERENCES
[1] API.AI. 2017. What is API.AI. h�ps://api.ai/docs/ge�ing-started/basics. (2017).

[Online; accessed 27-August-2017].
[2] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated

analysis of feature models 20 years later: A literature review. Information Systems
35, 6 (2010), 615–636.

[3] Johan Bos, S Larsson, I Lewin, C Matheson, and D Milward. 1999. Survey of
existing interactive systems. Trindi (Task Oriented Instructional Dialogue) report
D1 (1999), 3.

[4] Grant Clauser. 2017. What is Alexa. h�p://thewirecu�er.com/reviews/
what-is-alexa-what-is-the-amazon-echo-and-should-you-get-one/. (2017).
[Online; accessed 27-June-2017].

[5] Watson Developer Cloud. 2017. About Natural Language Classi�er. h�ps://www.
ibm.com/watson/developercloud/nl-classi�er.html. (2017). [Online; accessed
26-June-2017].

[6] Watson Developer Cloud. 2017. About Text to Speech. h�ps://www.ibm.com/
watson/developercloud/doc/text-to-speech/index.html. (2017). [Online; accessed
25-June-2017].

[7] Watson Developer Cloud. 2017. About Tone Analyzer. h�ps://www.ibm.com/
watson/developercloud/doc/tone-analyzer/index.html. (2017). [Online; accessed
26-June-2017].

[8] Watson Developer Cloud. 2017. Building A dialog. h�ps://www.ibm.com/watson/
developercloud/doc/conversation/dialog-build.html. (2017). [Online; accessed
25-June-2017].

[9] Watson Developer Cloud. 2017. Context and State. h�ps://www.ibm.com/
watson/developercloud/doc/conversation/dialog-context.html. (2017). [Online;
accessed 25-June-2017].

[10] Watson Developer Cloud. 2017. Overview of the Retrieve and Rank service. h�ps:
//www.ibm.com/watson/developercloud/doc/retrieve-rank/index.html. (2017).
[Online; accessed 26-June-2017].

[11] Watson Developer Cloud. 2017. Speech to Text - Convert human voice into
wri�en word. h�ps://www.ibm.com/watson/developercloud/speech-to-text.
html. (2017). [Online; accessed 25-June-2017].

[12] Watson Developer Cloud. 2017. Watson Tutorial. h�ps://www.ibm.com/watson/
developercloud/doc/conversation/tutorial-dialog.html. (2017). [Online; accessed
26-June-2017].

[13] Josh Constine. 2017. Facebook Acquires Wit.ai To Help Its Developers With
Speech Recognition And Voice Interfaces. h�ps://techcrunch.com/2015/01/05/
facebook-wit-ai/. (2017). [Online; accessed 27-August-2017].

[14] Krzysztof Czarnecki. 1998. Generative programming: Principles and techniques
of so�ware engineering based on automated con�guration and fragment-based
component models. (1998).

[15] Krzysztof Czarnecki, Ulrich W Eisenecker, and Krysztof Czarnecki. 2000. Gen-
erative programming: methods, tools, and applications. Vol. 16. Addison Wesley
Reading.

[16] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2004. Staged con�g-
uration using feature models. In SPLC, Vol. 3154. Springer, 266–283.

[17] Chad Edwards, Autumn Edwards, Patric R Spence, and Ashleigh K Shelton.
2014. Is that a bot running the social media feed? Testing the di�erences in
perceptions of communication quality for a human agent and a bot agent on
Twi�er. Computers in Human Behavior 33 (2014), 372–376.

[18] Kathleen Kara Fitzpatrick, Alison Darcy, and Molly Vierhile. 2017. Delivering
Cognitive Behavior �erapy to Young Adults With Symptoms of Depression and
Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized
Controlled Trial. JMIR Mental Health 4, 2 (2017), e19.

[19] JS Foundation. 2017. About Node-Red. h�ps://nodered.org/about/. (2017). [On-
line; accessed 26-June-2017].

[20] Boris Fritscher and Yves Pigneur. 2014. Business model design: An evaluation of
paper-based and computer-aided canvases. In Fourth International Symposium
on (BMSD) Business Modeling and So�ware Design. Scitepress.

[21] Marcellus Gaag. 2017. 30 Best Facebook Bots. h�ps://chatbotsmagazine.com/
25-of-the-best-facebook-bots-to-chat-with-f159bca02dce. (2017). [Online; ac-
cessed 26-August-2017].

[22] Adrian Horzyk, S Magierski, and Grzegorz Miklaszewski. 2009. An Intelligent
Internet Shop-Assistant Recognizing a Customer Personality for Improving Man-
Machine Interactions. Recent Advances in intelligent information systems (2009),
13–26.

[23] Adrian Horzyk and Ryszard Tadeusiewicz. 2009. A Psycholinguistic Model
of Man-Machine Interactions Based on Needs of Human Personality. In Man-
Machine Interactions. Springer, 55–69.

[24] IBM. 2016. WATSON Conversation - Entities. h�ps://www.ibm.com/watson/
developercloud/doc/conversation/entities.html. (2016). [Online; accessed 24-
June-2017].

[25] IBM. 2016. WATSON Conversation - Intents. h�ps://www.ibm.com/watson/
developercloud/doc/conversation/intents.html. (2016). [Online; accessed 24-
June-2017].

[26] IBM. 2017. Cloud Automation Manager. h�ps://www.ibm.com/ca-en/
marketplace/cognitive-automation. (2017). [Online; accessed 26-June-2017].

[27] IBM. 2017. What is Watson Conversation. h�ps://www.ibm.com/watson/
developercloud/doc/conversation/index.html. (2017). [Online; accessed 28-
June-2017].

[28] Octavia J. Gutierrez-Garcia and Emmanuel Lpez-Neri. 2015. Cognitive Com-
puting: A Brief Survey and Open Research Challenges. 2015 3rd International
Conference on Applied Computing and Information Technology/2nd International
Conference on Computational Science and Intelligence (2015), 328–333.

[29] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-
terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report. Carnegie-Mellon Univ Pi�sburgh Pa So�ware Engineering Inst.

[30] Sukhanya Kethuneni, Stephanie Elizabeth August, and James Ian Vales. 2009.
Personal Health Care Assistant/Companion in Virtual World. In 2009 AAAI Fall
Symposium Series.

[31] Lorenz Cuno Klopfenstein, Saverio Delpriori, Silvia Malatini, and Alessandro
Bogliolo. 2017. �e Rise of Bots: A Survey of Conversational Interfaces, Pa�erns,
and Paradigms. In Proceedings of the 2017 Conference on Designing Interactive
Systems. ACM, 555–565.

[32] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. 2016.
Why developers are slacking o�: Understanding how so�ware teams use slack.
In Proceedings of the 19th ACM Conference on Computer Supported Cooperative
Work and Social Computing Companion. ACM, 333–336.

[33] Alessandro Murgia, Daan Janssens, Serge Demeyer, and Bogdan Vasilescu. 2016.
Among the machines: Human-bot interaction on social Q&A websites. In Pro-
ceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems. ACM, 1272–1279.

[34] Michael Newberg. 2017. Nearly 48 Million Twi�er Ac-
counts Could be Bots. h�p://www.cnbc.com/2017/03/10/
nearly-48-million-twi�er-accounts-could-be-bots-says-study.html. (2017).
[Online; accessed 27-June-2017].

[35] Linda M Northrop. 2002. SEI’s so�ware product line tenets. IEEE so�ware 19, 4
(2002), 32–40.

[36] Sarah Perez. 2017. Amazon Lex, �e Technology Behind Alexa
Opens up to Developers. h�ps://techcrunch.com/2017/04/20/
amazon-lex-the-technology-behind-alexa-opens-up-to-developers/. (2017).
[Online; accessed 26-August-2017].

[37] Libby Plummer. 2017. �e best bots of 2017. h�p://www.wired.co.uk/article/
chatbot-list-2017. (2017). [Online; accessed 27-June-2017].

[38] Jonathan Shieber. 2017. Ticketmaster’s chatbot for facebook
is actually not terrible. h�ps://techcrunch.com/2017/06/21/

10

https://api.ai/docs/getting-started/basics
http://thewirecutter.com/reviews/what-is-alexa-what-is-the-amazon-echo-and-should-you-get-one/
http://thewirecutter.com/reviews/what-is-alexa-what-is-the-amazon-echo-and-should-you-get-one/
https://www.ibm.com/watson/developercloud/nl-classifier.html
https://www.ibm.com/watson/developercloud/nl-classifier.html
https://www.ibm.com/watson/developercloud/doc/text-to-speech/index.html
https://www.ibm.com/watson/developercloud/doc/text-to-speech/index.html
https://www.ibm.com/watson/developercloud/doc/tone-analyzer/index.html
https://www.ibm.com/watson/developercloud/doc/tone-analyzer/index.html
https://www.ibm.com/watson/developercloud/doc/conversation/dialog-build.html
https://www.ibm.com/watson/developercloud/doc/conversation/dialog-build.html
https://www.ibm.com/watson/developercloud/doc/conversation/dialog-context.html
https://www.ibm.com/watson/developercloud/doc/conversation/dialog-context.html
https://www.ibm.com/watson/developercloud/doc/retrieve-rank/index.html
https://www.ibm.com/watson/developercloud/doc/retrieve-rank/index.html
https://www.ibm.com/watson/developercloud/speech-to-text.html
https://www.ibm.com/watson/developercloud/speech-to-text.html
https://www.ibm.com/watson/developercloud/doc/conversation/tutorial-dialog.html
https://www.ibm.com/watson/developercloud/doc/conversation/tutorial-dialog.html
https://techcrunch.com/2015/01/05/facebook-wit-ai/
https://techcrunch.com/2015/01/05/facebook-wit-ai/
https://nodered.org/about/
https://chatbotsmagazine.com/25-of-the-best-facebook-bots-to-chat-with-f159bca02dce
https://chatbotsmagazine.com/25-of-the-best-facebook-bots-to-chat-with-f159bca02dce
https://www.ibm.com/watson/developercloud/doc/conversation/entities.html
https://www.ibm.com/watson/developercloud/doc/conversation/entities.html
https://www.ibm.com/watson/developercloud/doc/conversation/intents.html
https://www.ibm.com/watson/developercloud/doc/conversation/intents.html
https://www.ibm.com/ca-en/marketplace/cognitive-automation
https://www.ibm.com/ca-en/marketplace/cognitive-automation
https://www.ibm.com/watson/developercloud/doc/conversation/index.html
https://www.ibm.com/watson/developercloud/doc/conversation/index.html
http://www.cnbc.com/2017/03/10/nearly-48-million-twitter-accounts-could-be-bots-says-study.html
http://www.cnbc.com/2017/03/10/nearly-48-million-twitter-accounts-could-be-bots-says-study.html
https://techcrunch.com/2017/04/20/amazon-lex-the-technology-behind-alexa-opens-up-to-developers/
https://techcrunch.com/2017/04/20/amazon-lex-the-technology-behind-alexa-opens-up-to-developers/
http://www.wired.co.uk/article/chatbot-list-2017
http://www.wired.co.uk/article/chatbot-list-2017
https://techcrunch.com/2017/06/21/ticketmasters-chatbot-for-facebook-is-actually-not-terrible/

ticketmasters-chatbot-for-facebook-is-actually-not-terrible/. (2017). [Online;
accessed 27-June-2017].

[39] Slack. 2017. What is Slack - Ge�ing Started. h�ps://get.slack.help/hc/en-us/
articles/115004071768-What-is-Slack-. (2017). [Online; accessed 26-June-2017].

[40] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. 2001. On the notion of
variability in so�ware product lines. In So�ware Architecture, 2001. Proceedings.
Working IEEE/IFIP Conference on. IEEE, 45–54.

11

https://techcrunch.com/2017/06/21/ticketmasters-chatbot-for-facebook-is-actually-not-terrible/
https://get.slack.help/hc/en-us/articles/115004071768-What-is-Slack-
https://get.slack.help/hc/en-us/articles/115004071768-What-is-Slack-

	Abstract
	1 Introduction
	2 Requirements for a Cognitive Agent Platform
	2.1 Case Studies
	2.2 The Personality of Cognitive Agents
	2.3 Eliciting and Validating Content with Stakeholders

	3 Reference Architecture for Chatbot Applications
	3.1 User Interfaces
	3.2 External Services and Sources
	3.3 Chatbot Application Core
	3.4 Text Analysis Services - Personality Processing
	3.5 Dialog Service

	4 Defining Variability and Commonality
	5 Implementation of The Framework
	5.1 YU Student Services Bot
	5.2 SAM: A Systems Administrator Minion

	6 Future Implementation and New Features
	7 Related Work
	8 Conclusion
	References

