
Evaluating Adaptation Methods for Cloud Applications: An Empirical Study

Marios Fokaefs, Yar Rouf, Cornel Barna and Marin Litoiu

Department of Electrical Engineering and Computer Science
York University

Toronto, ON, Canada
Email: fokaefs@yorku.ca, yarrouf@my.yorku.ca, cornel@cse.yorku.ca, mlitoiu@yorku.ca

Abstract—Web software systems generally reside in highly
volatile environments; their incoming traffic may be subject
to sharp fluctuations from reasons that cannot always be
captured or predicted. Cloud computing provides a solution
to this problem by offering flexible resources, like containers,
which can be quickly and easily scaled according to the current
workload needs. Automating this process is a key aspect for
the management of modern web software systems, and there
is a plethora of methods to implement autonomic management
systems. In this work, we review three of these methods,
a threshold-based approach, a control-based approach and
a model-based approach. We design and run a number of
experiments for all three systems with different workloads
to evaluate their ability to manage the software system and
how well they do so. Our experiments were conducted on the
Amazon EC2 cloud with Docker containers.

Keywords-self-adaptive systems; cloud computing; contain-
ers; control theory; performance models;

I. INTRODUCTION

With the advent of cloud computing as the dominant

paradigm to support web-based, distributed software sys-

tems, and later the emergence of containers and microser-

vices as advancements in virtualization and modular soft-

ware, the ability to flexibly manage cloud topologies in

order to offer high quality services with reduced costs

became a reality. This also raised the need for efficient and

sophisticated management systems, which will achieve the

goals of high quality and low cost automatically, but also

consistently. A number of methods have been proposed and

used to implement autonomic management systems (AMS),

but it is not always evident, which adaptation method is

better for what settings, systems or workloads.

Regardless of the particulars of each AMS, it is generally

accepted that they should follow the MAPE-K reference ar-

chitecture [1]. According to this architecture, the AMS starts

with a monitoring module, which is responsible of gathering

metrics to comprise the state of the managed system. These

metrics will be passed on to the analysis module, which

will identify any off measurements indicating a potentially

problematic case. In case there is a problem, the planning

module will assess the situation and will propose the best

possible action to address the issue. The planned actions are

then forwarded to the execution module, which has access

to the software system and the supporting infrastructure

and eventually applies the corrective actions. Different AMS

implementations and adaptation methods may focus on

different modules from the MAPE-K architecture, usually on

the analysis and planning as the monitoring and execution

modules are third-party tools available by the cloud or the

software provider.

In our work, we consider three types of AMS:

1) A threshold-based AMS implemented using prede-

fined thresholds on observed metrics and predefined

corrective actions. This is one of the most popular

methods currently in practice, mainly thanks to its sim-

plicity, its general applicability and its basic efficiency.

In practice, the developer defines a priori thresholds

on performance metrics. If current measurements de-

viate from these thresholds, it is an indication for a

problem. As a response, the AMS takes a predefined

action tied to the particular threshold violation (e.g.,

add/remove container).

2) A control-based AMS implemented with a PID con-

troller [2]. This type of controllers is generally domain

agnostic, meaning that the controller is not actually

aware of the nature of a problem or of the adaptive

action. Its sole purpose is to correct errors in the

system’s observable state by applying specific adaptive

actions. This type of AMS traverses both analysis and

planning phases of MAPE-K.

3) A model-based AMS implemented using a simple

mathematical model to linearly represent the system’s

performance. The model is a set of functions that cal-

culates the utilization of the system’s infrastructure by

the current traffic and it can estimate the necessary size

of the infrastructure to serve this traffic according to

certain performance goals. This AMS focuses mostly

on the planning phase; when a problem is identified

(by any method), the model will determine the exact

corrective action to be planned. This means that the

action may differ every time according to the problem,

making the planning a dynamic process.

Subsequently, we design a set of experiments to evaluate

the three AMS and answer the following research questions:

• RQ1: Which method can most effectively maintain the
performance goal? In this case, we use quantitative

2017 IEEE 10th International Conference on Cloud Computing

2159-6190/17 $31.00 © 2017 IEEE

DOI 10.1109/CLOUD.2017.85

632

metrics to determine if each method maintains the

performance of the managed system and to what de-

gree. We focus on the error from the given goal and

we examine whether there is any significant difference

between the three methods.

• RQ2: Which method can most efficiently maintain the
performance goal? Here, we don’t want to see if a

method simply achieves the goal, but more importantly

how well it can do so. We rely on quality metrics to

see how fast the goal is achieved, how fast the system

converges to the goal and becomes stable and how

robust the manager is to sudden and high fluctuations

in the workload.

All experiments were executed on Amazon EC2 with Docker

containers using a variety of workloads on a 3-tier web

application. This paper contributes one of the first, to the

best of our knowledge, comprehensive study on AMS for

containerized applications. The chosen AMS represent the

state-of-the-practice, an AMS offered by all public cloud

providers, and the state-of-the-art, two AMS product of

research. The study evaluates not only their effectiveness

but also their effectiveness by presenting qualitative metrics.

Additionally, the execution of our experiments on a real

environment with cutting-edge technology gives strength to

our conclusions. We kept the workloads and the subject

application relatively simple and controlled to allow for a

closed experimental setup, which would allow for concrete

conclusions. Open-end experiments are the natural extension

of this study.

II. RELATED WORK

Adaptive systems have been proposed to automatically

manage web applications and react to change. An adaptive

system is a system capable to function properly, within

parameters defined by the Service Level Objective (SLO),

without human intervention [1]. The system is capable to

extract data from the environment where the web application

resides (using a series of sensors), analyze it (identify

problems that might prevent the application to function

optimally or within parameters), create an adaptation plan

(if necessary) and implement it. The web application and the

resources it uses become the managed resources, while the

rest of the system are part of the application manager. Archi-

tecturally, autonomic systems follow the Monitor-Analyze-

Plan-Execute (MAPE-k) loop sugested by IBM [1].

The multi-tenant nature of the cloud, that allows multiple

independent applications to share the same hardware, makes

cloud-deployed applications more challenging to manage

[3]. The simplest type of adaptation strategy that can be

designed is one using policies, which are essentially event-

condition-action (ECA) rules: when event happens, if con-
dition is true, then execute action. These rule-based systems

have been investigated to some extent [4], [5]. In practice,

events are usually triggered when particular performance

metrics cross predefined thresholds.

At the heart of an autonomic system is the decision-

making process on when adaptation is required, in other

words, how to identify the location of the problem and how

to optimally determine the type and quantity of resources

that need to be added or removed. To analyze the data

and create an action plan, some authors turned to models.

Zahorjan et al. [6], Eager and Sevcik [7], Lazowska et al. [8],

and Reiser and Lavenberg [9] have presented methods to

analyze a system from a performance point of view. Balbo

and Serazzi [10], and Litoiu et al. [11] have additionally

considered how the potential structure of the workload may

influence the performance of the deployed system, how

bottlenecks shift when the workload mix changes and when

the resources become saturated. A method to uncover the

worst workload mix and the minimum population required

to saturate a system is presented by Barna et al. [12].

Current state-of-the-art cloud environments implement

and promote elasticity by offering software services for the

automatic scaling of a cloud topology. More specifically,

Amazon [13] offers autoscaling capabilities in conjunction

with EC2 and CloudWatch, its monitoring service. The

developer can set up CloudWatch alarms to go off when

particular metrics go beyond specified thresholds (above

or below the threshold) and corresponding adaptive actions

are triggered to add or remove servers. Alternatively, if the

workload pattern is known, the developer can set up scaling
schedules to adapt the topology even without CloudWatch.

OpenStack [14] offers a similar service as a result of the

collaboration between its monitoring service, Ceilometer,

and its orchestration service, Heat. In both cases, the scaling

policies are threshold-based and result in over-simplified

adaptive actions (i.e. add/remove servers). Additionally, the

services can react only to threshold violations for metrics

that the respective monitoring services can measure. Given

that the aforementioned monitoring services were primarily

designed for billing purposes, they fall short in capturing

important metrics, such as response time, service throughput

or application level metrics.

Beyond threshold-based and rule-based techniques, there

are various proposed techniques ranging from discrete op-

timization algorithms to control theoretic approaches. For

example, Li et al. [15] propose optimization deployments us-

ing bin packing algorithms augmented with integer program-

ming to minimize application response time and infrastruc-

ture cost. Other approaches use control theory specific ap-

proaches such as model predictive control optimization [16]

or other control methods [17], [18], [19]. Depending on the

problem and the cost function to be achieved, but also taking

into account other criteria, such as maintainability, evolution,

cost of development, elasticity designers and implementers

can choose an industrial rule based approach or control and

optimization based techniques [19].

633

Proportional-Integral-Derivative (PID) controllers were

first introduced as autonomic management components for

web applications by Gergin et al. [20], under the assumption

that the application was multi-tier and that each tier was

implemented in a cluster (i.e. multiple virtual machines

performing the same task). Also, it was assumed that the

service’s demands for resources (e.g. CPU, memory etc.) of

each tier was known and constant. In this paper, we deal with

more realistic assumptions: not all tiers are clustered and

we only have access to the response time of the application

and to CPU utilization of the clustered tier, which we can

monitor. In practice, we do not assume a model of the

application or a model of the cloud as it happens with

complex optimization algorithms.

III. EXPERIMENTAL SETUP

In our study, we design six experiments to apply three

types of AMS on two different workloads. All experiments

are performed on a custom web application representing an

e-store deployed on the Amazon EC2 cloud with Docker

containers. To compare the results of the experiments and

evaluate the three AMSs according to the research questions

we have put forth, we use such metrics like mean absolute

error, overshoot, rise time and settling time among others.

In this section, we detail the setup of our experiments,

first, with respect to the application and the cloud technical

specifications, second, with respect to the design details of

the AMSs, third, with respect to the workloads, and, finally,

with respect to the evaluation metrics.

A. Subject Application and Cloud Specification

The application used as the subject in our experiments

is a minimal three-tier web application [21], as shown in

Figure 1. At the front sits an Apache load balancer acting

as the front-end interface of the application and distributing

incoming requests to the scalable middle layer. There sits a

set of Tomcat servers, which host the actual application. At

the back-end of the topology, there is a MySQL database.

The application is a simple Java application which issues

a number of different requests (select, insert, update) of

variable intensity (i.e., number of records). We can control

the type and intensity of the requests, which allows us to

stress test specific resources (CPU, memory, disk, network)

and activate particular scaling plans. In our experiments,

we focus entirely on CPU saturation and regulation. The

simplicity and degree of control over this application allow

us the flexibility to focus on testing various AMSs without

unexpected external effects from the application.

The application is deployed on Docker containers, which

in turn are setup in Amazon EC2 virtual machines. More

specifically, we use 4 VMs to set up the Docker Swarm

cluster; a micro VM (1 vCPU, 1 GB RAM and 8 GB disk) as

the Swarm manager and 3 xlarge VMs (each 3 vCPU, 16 GB

RAM and 8 GB disk) as Swarm hosts, where the containers

Presentation Tier Logic Tier Data Tier

. . .

Clients

Load Balancer

. . .

Web Servers

. . .

Database Servers

Figure 1. Three-tier architecture for the subject web application.

will actually reside. To enable container scaling, we have to

define constraints on the resources that the containers will

take from their hosts [22] and, so, we define the notion of 1

computational unit to be 512 MB RAM and 3.75% CPU of

the host. This gives us capacity for 32 computational units

per host. In order to avoid saturation on the load balancer or

the database, we allow the respective containers to be larger

allocating them 10 computational units each. Eventually,

allocating 1 computation unit for each Tomcat container, we

can have capacity for 76 Tomcat web workers in the three

hosts.

B. Designing the Autonomic Management Systems

In this work, we consider three types of AMS; a control-

based, a model-based and a rudimentary threshold-based.

Following the MAPE-K architecture, the monitoring and

executor modules, provided in our experiments by Amazon

and by Docker, remain common for all three systems. In

this section, we detail how each of the AMS we consider

implement the analysis and planning modules.
1) Threshold-based Adaptation: Threshold-based tech-

niques are possibly the most prevalent in industrial appli-

cations, since they are simple, requiring no special design

techniques, and they are applicable in most applications

and scenarios. They are used and offered by most cloud

providers, including Amazon [13] and OpenStack [14] In

practice, these techniques include simple IF-THEN rules.

For example, if average CPU utilization is more than 80%,
add 1 resource (container or VM). Nevertheless, like any

other generic method, threshold-based techniques suffer in

very specific situations, for example, when we have sudden

surges in the workload, or in general when we have highly

irregular and volatile workloads. Another shortcoming of

this method is that the adaptation strategy, which will

respond to the threshold violation is static and decided on

design time, e.g., add 1 VM. This may be counterintuitive,

since every violation may have to be dealt in a different

manner.

The quality of threshold-based techniques lies on what

thresholds will be chosen. In this work, we adopt an

empirical approach to find when the web cluster (Tomcat

servers) are overutilized or underutilized. The thresholds

we eventually chose for the average CPU utilization of the

web cluster are 80% and 60%. We saw that beyond 80%

any additional request starts having a non-linear effect on

response time causing great increases and thus significantly

634

deteriorating the quality of the application. On the other

hand, we saw that generally below 60% we can remove at

least one container and redistribute the load that it would

have received to the rest of the cluster without affecting

their levels of utilization. In-between these values, response

time is well maintained and there are no signs of quality

deterioration. Concerning the adaptation strategy, we set up

the technique to simply add or remove a single container

when the thresholds are crossed.
2) Control-based Adaptation: Control theory has been

used to regulate the behaviour of software and computing

systems [17], [23]. Among other solutions, Proportional-

Integral-Derivative (PID) controllers have been exceptionally

popular to certain domains [2] and have been used in

software systems as well [20], [24], mainly due to their

simplicity, but also their effectiveness. Practically, the PID

controller is the function shown in Equation 1. The function

receives as input the error, e(t), between the observed

value, y, of a metric and the set goal, ygoal. The error is

processed in three parts; the proportional (with coefficient

Kp), corresponding to the current error, the integral (with

coefficient Ki), corresponding to the cumulative past error,

and the derivative (with coefficient Kd), corresponding to

estimation about future error. The three parts are processed

and aggregated to produce the input to the controlled system,

in other words the adaptive action and its intensity necessary

to counter the different types of error. In the context of our

work, the adaptive action is adding or removing containers

on the web (middle) layer of our application, its intensity

corresponds to the number of containers we will add or

remove and the error is calculated on the average CPU

utilization of the web cluster.

u(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
(1)

The design process of a PID controller includes the cal-

culation of the function coefficients, Kp, Ki, Kd. Although

there is a number of methods to tune the coefficients, both

automatic and manual [2], we opted to follow an empirical

approach. We profiled our application and measured the

effect that adding or removing containers have on the CPU

utilization of the cluster, as well as the deviation from the

set goal for the CPU utilization that can be caused by fluc-

tuations in the incoming traffic. Eventually, we converged

to the following values: Kp = 0.14, Ki = 0.0002 and

Kd = 0. From these values, it is implied that we put

more importance in correcting the latest error, less so on

accumulated past errors and none at all on future errors.

The last point is because variations in workload may be

largely unpredictable and we cannot afford the controller

taking actions that will prove invalid shortly after. Finally,

the set goal for the average CPU utilization was set to 70%,

which is the median of the range used in the threshold-based

adaptation.

3) Model-based Adaptation: Performance models are a

crucial component in software system design and quality

assurance. Their ability to accurately capture the perfor-

mance of the system under different conditions along with

the ability to simulate the actual system and try various

scenarios make them a powerful tool in managing their be-

haviour, maintaining their quality and, eventually, designing

adaptation strategies and reaction plans to changes in the en-

vironment, including workload fluctuations or infrastructure

variations. Many models have been designed and used both

in practice and research, including non-linear model [25],

favoured for their high accuracy in capturing the system, but

also linear ones [26], [18], [23], preferred for their simplicity

and analytic efficiency.

In our work, we have opted for a simple linear model. The

first step is to find what is the capacity of each container,

in other words, how many requests per second a single

container can handle before it exceeds the utilization of 70%

(around the median of our threshold range). Empirically,

for our application and its infrastructure, we measured the

average CPU utilization for different workloads and different

number of containers, we calculated the nominal workload

to increase utilization by 1% and then extrapolated this

value for 70% utilization to find the container’s capacity.

Eventually, the capacity was given by the average of all the

measurements for the different workloads. The calculation

of capacity is formally given by Equation 2, where λi

is the arrival rate in measurement i, Ui is the average

CPU utilization in measurement i and n is the number of

measurements.

capacity =

n∑
i

λi

Ui
× 0.7

n
(2)

For example, if in one measurement we have 2.9 requests

per second generating 30% of utilization, Equation 2 will

give us that the capacity of the container is approximately

6.8 requests per second.

Having determined the capacity of a container, we can

now continue with defining the adaptation strategy. Scaling,

in this case, is triggered exactly as in the previous method,

by checking the thresholds. However, if the thresholds are

crossed, we no longer add/remove a statically determined

number of containers, but rather consult the model with

Equation 3 to find how many containers can cover the

current arrival rate given the previously calculated capacity.

Containers =

⌈
λ

capacity

⌉
(3)

The problem with this method is that the arrival rate, λ,

for closed systems, depends on the response time; the higher

the response time, the less requests the users will be able to

send and vice versa. Therefore, when the cluster is saturated

we may not be receiving the highest workload possible

635

and, thus, underestimating the situation with respect to our

scaling decisions. To alleviate this situation, we calculate the

actual traffic by first estimating the number of users currently

using our system using the leftmost part of Equation 4,

where N is the number of users, R is the response time

and T is the users’ average think/process time. Assuming a

constant think time, we calculate the number of users for the

currently observed response time and arrival rate. Using this

number of users and the rightmost part of Equation 4, we

calculate the actual rate that these users can send requests

in a non-saturated cluster, by replacing the current response

time with a more desired value. The new λ is the actual

arrival rate and we use this one in Equation 3 to find the

number of containers that we need.

N =
1000× λ

R+ T
⇔ λ =

N × (R+ T)

1000
(4)

For example, let us assume that we receive 24.13 requests

per second and our system responds on average in 430ms

with the users having a think time of 500ms. This means that

we have approximately 22 users. If we want to aim for a

response time around 100ms, under these conditions the 22

users can issue about 37.14 requests per second. With these

values, Equation 3 informs us that we need 6 containers to

cover this demand. It is obvious that if we had used the

original arrival rate, we would have used only 4 containers

risking further saturation of the cluster.

C. Workloads

We subjected the aforementioned AMSs to two work-

loads. In the first workload, there are sharp increases or

decreases in the number of users and by extension to the

arrival rate. The fluctuations are so sharp, so as to create the

need to change the infrastructure with more than one con-

tainer in one adaptive action. Moreover, the sharp changes

come at different intensities, so the number of containers

may differ from case to case. After each fluctuation there is

a short period with no change to the workload, so that the

system is allowed to rest and for the adaptive action to take

effect and we can clearly observe its impact. We call this

workload sharp and it has about 400 data points.

The second workload represents a more realistic traffic for

a web application. It slowly increases in the beginning and in

the same pace decreases close to the end, while in the middle

there are shorter and smoother fluctuations. There are no rest

periods between the changes in the workload. The workload

is designed to resemble the traffic of a web application, i.e.,

an e-store during a day. We call this workload smooth and

it has about 800 data points.

D. Evaluation Parameters

In order to compare the three AMSs in all six experiments

with respect to how effective they are in adapting the

software system and how efficiently they do so, we use

certain statistical metrics and methods to evaluate their

effectiveness and quality metrics borrowed from control

theory [2] to evaluate their efficiency. Due to the dynamic

and real-time nature of the software system and the impact

from the workload volatility, we had to redefine some of the

details of the latter metrics, but the spirit is generally the

same. The definition of all the metrics is as follows:

• Mean Absolute Percentage Error: We use MAPE to

evaluate how accurate and how effective the adaptations

each AMS performs as a response to changes in the

workload. Given that two of the three AMSs (control

and model) have a fixed setpoint, but the threshold-

based AMS has a range of setvalues, in order to make

the comparison fair, we measure all MAPEs according

to a range (between 60% and 80% of CPU utilization).

We call the 60-80 range as the steady-error zone.

Therefore, when the average utilization is within the

range, the error is 0, and when it is not, the error is

calculated from the closest threshold value. In order to

compare if the three methods have different effective-

ness and gauge the significance of this difference, we

applied the Student t-test to the three MAPEs, pairwise.

Given the large size of our samples (more than 400

points for the sharp workload and more than 800 points

for the smooth workload), we can assume that our

samples follow the normal distribution and thus the use

of the Student t-test is possible.

• Raise time is defined as the number of iterations from

the moment a sharp change in the workload is intro-

duced until the first iteration the utilization enters the

60-80 range. This metric shows how well the AMS

judges the situation and issues that adaptive action,

which will correct the system’s behaviour in the fastest

way possible.

• Overshoot is defined as the maximum error from the

moment utilization crosses the setpoint of 70% until the

setpoint is crossed again from the other direction and

between all iterations that the utilization stayed above

or below 70%. This metric shows how much the AMS

may overestimate or underestimate the situation.

• Settling time is defined as the number of iterations from

the moment a sharp change in the workload is intro-

duced until the moment utilization enters the steady-

error zone and stays there for at least 3 iterations. This

metric includes the ability of the AMS to react fast but

also bring the system back to an eventually stable state.

IV. VALIDATION EXPERIMENTS

Figures 2 and 3 show the results for our experiments on

the sharp workload and on the smooth workload respectively.

In each figure, the top plot shows the workload in terms of

number of users, the next plot shows the response time of

the system, the third plot shows the average CPU utilization

of the web cluster and the bottom plot shows the number

636

Table I
EXPERIMENTAL RESULTS

AMS/workload Total # containers Avg CPU Response time MAPE Rise time Overshoot Settling time

Threshold (sharp) 8157 67.98 184.25 22.24 8.7 13.61 14
PID (sharp) 7867 70.73 211.17 8.95 3.9 18.89 9.85
Model (sharp) 6860 77.72 222.86 14.71 9.25 17.82 13.7
Threshold (smooth) 18877 70.78 104.24 1.49 – – –
PID (smooth) 19122 70.02 107.63 1.97 – – –
Model (smooth) 15269 85.33 106.74 9.73 – – –

of containers used in each iteration of the experiment. In

all plots in both figures, the blue lines correspond to the

threshold-based AMS, the red lines to the PID controller

and the green lines to the model-based AMS. Table I1

summarizes the results of all experiments.

Figure 2. Comparison between the three AMSs for the sharp workload.

1The complete dataset of the experiments can be found at https://goo.gl/
VuOYe5.

Figure 3. Comparison between the three AMSs for the smooth workload.

A. Effectiveness

In order to answer the first research question (RQ1), we

have to examine if each AMS achieved the defined goal,

how well it did so and what actions it employed in the

process. As it can be seen from Table I, with respect to the

sharp workload, all three AMSs stayed within the steady-

error zone, on average, with the threshold-based AMS closer

to the lower bound as it employed more containers in

total, thus achieving lower response time, while the model-

based AMS stayed closer to the upper bound demonstrating

the highest response time, but with the least number of

637

containers, among the three. However, the MAPE metric

shows that the threshold AMS deviated the most from the

steady-error zone with 22.24%. The pairwise Student t-tests

showed that the differences in MAPE between all three

AMSs are statistically significant. This means that with

respect to this metric the PID AMS was the best among the

three. In addition, this AMS stayed closer to the setpoint of

70% utilization using a medium number of containers and

achieving a respectable response time.

For the smooth workload, the threshold AMS and the

PID AMS demonstrated similar ability with respect to main-

taining the CPU utilization as well as the response time,

using comparable number of containers. The similarity is

also demonstrated in the low MAPE index for both AMSs.

In fact, the corresponding Student t-test showed that the

difference is not in fact statistically significant. The low

MAPE index can be justified by the smoothness of the

changes in the workload, compared to the previous case.

Conversely, the model AMS did not manage to maintain the

CPU utilization within the steady-error zone (the only case

out of the six experiments) and demonstrated a relatively

higher MAPE index. We also see that this AMS uses a

significantly lower number of containers. In retrospect, we

found that this was due to the model overestimating the

capacity of the containers. On one hand, this is because

we used a relatively small number of samples to find the

capacity of a container, possibly not capturing the whole

spectrum of the resource’s capabilities. On the other hand,

we reduced the capacity to a single average value to facilitate

the efficiency of the calculations, while it is known that cloud

system’s demonstrate a highly non-linear behaviour in their

performance. The impact of the single capacity is evident

in both workloads, but it is most prominent in the smooth

one, because of its length. It is part of our future plans

to extend this study to more types of models and evaluate

their capabilities in a similar manner. Overall, there was no

clear “winner” between threshold and PID in the smooth

workload, however PID demonstrated a robustness to the

differences between the two workloads, achieving the goal

in both cases.

B. Efficiency

To answer the second research question (RQ2) we calcu-

lated the three control quality indexes, as they were defined

before, for the three AMSs. It is important for these quality

metrics that a short rest period follows changes in the

workload, so that the adaptive action is allowed time to take

effect and for the system to reach a stable state. This would

not have been possible for the smooth workload, where the

change is continuous, and, therefore, we calculated these

indexes only for the sharp workload. The results in Table I

show that the PID AMS responds to a change in the fastest

way possible, requiring less than 4 iterations to reach the

setpoint. However, this comes at a cost; in order to be fast,

the AMS adds or removes a large number of containers to

fix the deviation in CPU, which causes an overshoot of about

18.89% on average. This is also evident at the bottom plot

of Figure 2, where as it can be seen, at the beginning of

every sharp change, the PID AMS adds/removes a large

number of containers, which it immediately tries to correct.

Nevertheless, this correction period does not last long, or at

least not longer than for the other AMSs, as it can be seen

by the settling time index. Conversely, the threshold AMS

was found to have exceptionally long settling time. This can

be visually confirmed in the response time plot for the sharp

workload (Figure 2), where the spikes in the response time

observed when there is a sharp change in the workload take

longer to be corrected by the threshold AMS. The reason for

this is because this type of AMS responds to changes in a

stepwise manner, adding or removing a single container at a

time, thus it takes longer to reach the setpoint (also evident

by the high rise time). Regardless of the overshoot, we can

claim that PID is the best overall alternative for the smooth

workload, as well. After all, PID quickly accounts for the

overshoot through the settling time.

V. CONCLUSION

Given the volatile nature of web software systems and

the flexibility offered by cloud platforms, and even more

by containerized infrastructures, autonomic management

systems play a crucial role in facilitating administrators

and developers. In this work, we presented a comparative

study between three popular choices for AMSs, including

threshold-based, control-based and model-based solutions.

We applied the three AMSs to a simple three-tier web ap-

plications deployed on the Amazon EC2 cloud with Docker

containers, on two different workloads. We compared the

subject management systems with respect to their ability to

achieve the performance goal we set, but also by judging

the quality of the produced solutions, how fast, accurate and

stable they were. Our findings showed that the control-based

AMS using PID is a near-optimal solution and generally

applicable across different workloads both with respect to

the performance goal and the quality of the adaptation.

In the future, our plan is to extend our study with more

workloads and more methods to implement AMSs. Addi-

tionally, we plan to study optimization techniques and more

complex control-based techniques and eventually explore the

possibility of hybrid adaptation solutions. Other possible

dimensions to extend our work is towards more complex

web applications with more scalable tiers, like data analytics

applications. ‘

REFERENCES

[1] IBM, “An architectural blueprint for autonomic
computing,” IBM, Tech. Rep., 2005. [On-
line]. Available: http://www-03.ibm.com/autonomic/pdfs/
AC%20Blueprint%20White%20Paper%20V7.pdf

638

[2] K. J. Aström and R. M. Murray, Feedback systems: an in-
troduction for scientists and engineers. Princeton university
press, 2010.

[3] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud
computing: state-of-the-art and research challenges,”
Journal of Internet Services and Applications,
vol. 1, no. 1, pp. 7–18, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s13174-010-0007-6

[4] T. Zheng, J. Yang, M. Woodside, M. Litoiu, and G. Iszlai,
“Tracking time-varying parameters in software systems with
extended kalman filters,” in Proceedings of the 2005 confer-
ence of the Centre for Advanced Studies on Collaborative
research. IBM Press, 2005, pp. 334–345.

[5] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and
G. Jiang, “Power and performance management of virtual-
ized computing environments via lookahead control,” Cluster
computing, vol. 12, no. 1, pp. 1–15, 2009.

[6] J. Zahorjan, K. C. Sevcik, D. L. Eager, and B. I. Galler,
“Balanced job bound analysis of queuing networks,” in SIG-
METRICS ’81: Proceedings of the 1981 ACM SIGMETRICS
conference on Measurement and modeling of computer sys-
tems. New York, NY, USA: ACM, 1981.

[7] D. L. Eager and K. C. Sevcik, “Performance bound hier-
archies for queuing networks,” ACM Trans. Comput. Syst.,
vol. 1, no. 2, pp. 99–115, 1983.

[8] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik,
Quantitative system performance: computer system analysis
using queuing network models. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1984.

[9] M. Reiser and S. S. Lavenberg, “Mean-value analysis of
closed multichain queuing networks,” J. ACM, vol. 27, no. 2,
pp. 313–322, 1980.

[10] G. Balbo and G. Serazzi, “Asymptotic analysis of multiclass
closed queuing networks: multiple bottlenecks,” Performance
Evaluation, vol. 30, no. 3, pp. 115–152, 1997.

[11] M. Litoiu, J. Rolia, and G. Serazzi, “Designing process
replication and activation: A quantitative approach,” IEEE
Trans. Softw. Eng., vol. 26, no. 12, pp. 1168–1178, 2000.

[12] C. Barna, M. Litoiu, and H. Ghanbari, “Autonomic
load-testing framework,” in Autonomic Computing, 2011.
International Conference on, ser. ICAC ’11. New York, NY,
USA: ACM, June 2011, pp. 91–100. [Online]. Available:
http://dx.doi.org/10.1145/1998582.1998598

[13] Amazon, “Autoscaling,” https://aws.amazon.com/
autoscaling/.

[14] Openstack, “Heat: Openstack Orchestration,” https://wiki.
openstack.org/wiki/Heat.

[15] J. Z. Li, M. Woodside, J. Chinneck, and M. Litoiu, “Cloudopt:
multi-goal optimization of application deployments across a
cloud,” in Proceedings of the 7th International Conference on
Network and Services Management. International Federation
for Information Processing, 2011, pp. 162–170.

[16] H. Ghanbari, M. Litoiu, P. Pawluk, and C. Barna, “Replica
placement in cloud through simple stochastic model predic-
tive control,” in Cloud Computing (CLOUD), 2014 IEEE 7th
International Conference on. IEEE, 2014, pp. 80–87.

[17] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury,
Feedback control of computing systems. John Wiley & Sons,
2004.

[18] A. Filieri, H. Hoffmann, and M. Maggio, “Automated
design of self-adaptive software with control-theoretical
formal guarantees,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New
York, NY, USA: ACM, 2014, pp. 299–310. [Online].
Available: http://dx.doi.org/10.1145/2568225.2568272

[19] H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai, “Explor-
ing alternative approaches to implement an elasticity policy,”
in Cloud Computing (CLOUD), 2011 IEEE International
Conference on. IEEE, 2011, pp. 716–723.

[20] I. Gergin, B. Simmons, and M. Litoiu, “A decentralized
autonomic architecture for performance control in the cloud,”
in Cloud Engineering (IC2E), 2014 IEEE International Con-
ference on. IEEE, 2014, pp. 574–579.

[21] M. Fokaefs, C. Barna, and M. Litoiu, “Economics-driven
resource scalability on the cloud,” in Proceedings of the
11th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. ACM, 2016, pp. 129–
139.

[22] M. Fokaefs, C. Barna, R. Veleda, M. Litoiu, J. Wigglesworth,
and R. Mateescu, “Enabling DevOps for Containerized Data-
Intensive Applications: An Exploratory Study,” in Proceed-
ings of the 2016 Conference of the Center for Advanced
Studies on Collaborative Research. IBM Corp., 2016.

[23] D. Arcelli, V. Cortellessa, A. Filieri, and A. Leva,
“Control theory for model-based performance-driven software
adaptation,” in Proceedings of the 11th International ACM
SIGSOFT Conference on Quality of Software Architectures,
ser. QoSA ’15. New York, NY, USA: ACM, 2015, pp. 11–
20. [Online]. Available: http://dx.doi.org/10.1145/2737182.
2737187

[24] C. Barna, M. Fokaefs, M. Litoiu, M. Shtern, and J. Wig-
glesworth, “Cloud adaptation with control theory in industrial
clouds,” in Cloud Engineering Workshop (IC2EW), 2016
IEEE International Conference on. IEEE, 2016, pp. 231–
238.

[25] C. M. Woodside, T. Zheng, and M. Litoiu, “Performance
model estimation and tracking using optimal filters,”
IEEE Transactions on Software Engineering, vol. 34,
no. 3, pp. 391–406, 2008. [Online]. Available: http:
//dx.doi.org/10.1109/TSE.2008.30

[26] H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai,
“Feedback-based optimization of a private cloud,” Future
Generation Computer Systems, vol. 28, no. 1, pp. 104–111,
January 2012. [Online]. Available: http://dx.doi.org/10.1016/
j.future.2011.05.019

639

