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ABSTRACT
In an ever-changing landscape of software technology, new
development paradigms, novel infrastructure technologies
and emerging application domains reveal exciting opportuni-
ties, but also unprecedented challenges for developers, prac-
titioners and software engineers. Amongst this innovation,
containers as infrastructure support, data-intensive applica-
tion as a domain and DevOps as a development paradigm
have gained significant popularity recently. In this work, we
focus on these concepts and present an exploratory study on
how to develop such applications, deploy and deliver them
in Docker containers and eventually manage them by en-
abling autoscaling on the container level. In the paper, we
detail our experimental process pointing out the problems
we encountered along with the solutions we used. Eventu-
ally, we present a set of stable experiments to demonstrate
the autoscaling capabilities we achieved.

Keywords
devops, containers, big data, data analytics, cloud comput-
ing, adaptive systems, autoscaling

1. INTRODUCTION
With a multitude of sources to produce data in every-

day life including mobile devices, sensors, smart appliances,
smart cars and so on, the requirements for storing and ana-
lyzing this data to acquire useful information and knowledge
have increased to exceptional levels and novel technologies
are constantly being proposed to better handle the need.
Innovations have appeared both on the software and the
infrastructure layer and the two layers seem to simultane-
ously push each other forward. On the hardware side, in the
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beginning, we had mainframes and physical servers and de-
ployed software was available in a client-server architecture
directly to end-users. Later, software was being developed
in a modular manner and functionality became available in
self-contained independent pieces of software, what became
known as web services. However, since web services were
meant to be invoked by other software, it became evident
that traffic could be quite volatile and fluid requiring addi-
tional flexibility from the infrastructure’s perspective. This
gave rise to the virtualization of resources, the central con-
cept of cloud computing, so that infrastructure is easily cus-
tomizable and adaptable as the requirements change. More
recently, infrastructure has been raised to new levels of ab-
straction; containers package web services into isolated soft-
ware environments (including libraries, configurations, file
systems etc.) that are hosted by an operating system inside
a VM. Containers constitute a more lightweight hosting en-
vironment that lifts from the software developer the respon-
sibility of managing and maintaining the infrastructure or
even the operating system, bringing development closer to
the DevOps model [10].

In light of these advancements and in combination with
the unique challenges that big data applications pose, the
provision, deployment, management and maintenance of such
software on the cloud becomes non-trivial requiring novel
and effective methods. Our research focuses mainly on self-
adaptive systems through scaling of virtual resources. In
this particular paper, we study the challenges, pitfalls and
best practices in developing and adapting data-intensive ap-
plications on extra layers of virtualization, namely Docker
containers. We adopt an exploratory method, starting with
vanilla configurations and addressing the problems as they
come. First, we start with setting up the infrastructure and
developing our testbed applications. Second, we deploy the
applications in the infrastructure and stress them with in-
tensive workload. The reason behind stressing is to create
causes for scaling and identify the respective limits of the
applications and the resources. Finally, based on these last
observations, we set up an autonomic management system to
provide autoscaling capabilities to our topologies. We have
focused on two applications; a three-tier one with a simple
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service that accesses a relational database and a four-tier
one with a service cluster that submits analytics requests to
another cluster, which in turn accesses a NoSQL database
cluster.

In the process of our exploratory study, we identify the
challenges around the DevOps phases we are interested in
(development, deployment and management), we point out
the options we explored to address each challenge and finally
we present a set of experiments we were able to conduct
based on our experience. Eventually, the goal of this paper
is to create a DevOps guide and experience report on how to
develop data-intensive applications intended for lightweight
and distributed cloud systems, how to deploy them on such
system and, finally, how to manage them and maintain their
performance.

The rest of this paper is organized as follows. Section 2
provides an overview of the technologies and the concepts we
employ, namely Docker Containers, Spark analytics, Cassan-
dra data storage and we outline the architecture and the im-
plementation details of the testbed applications. Section 3
discusses how we set up the infrastructure in preparation
for our experiments. Section 4 presents the backbone of our
exploratory process where we record the challenges and op-
tions. Finally, in Section 5, we present the results for some
stable and working experiments, while Section 6 concludes
our work.

2. TECHNICAL BACKGROUND
During the process of setting up the topologies to execute

our experiments, we used a number of applications, tech-
nologies and software tools. Therefore, we deem it necessary
to provide more information about them and report on doc-
umentation as this will be encountered by less experienced
developers the first time they endeavour to delve into these
technologies. Given that we were not complete experts our-
selves with these technologies, this is largely what we had
to start with, when we began this exploratory study.

2.1 Testbed Applications
In our work, we use two applications, eBook Store and

LEGIS (Locality-Enhanced Geographic Information System)
[9]. eBook Store is a homegrown application, which we have
used extensively in our previous work as a representative
example of a simple three-tier web application. LEGIS is
a more sophisticated application, which follows a four-tier
architecture with an additional big data analytics layer sep-
arated from the application’s logic.

There are a number of reasons why we decided to use two
applications in our study. The first reason is because we
have extensive experience with eBook Store, which could
help us set up the container cluster easier and interpret
the results with more expertise. On the other hand, we
wanted a more complex application to study more implica-
tions of the scaling process. LEGIS provides this complexity,
since it uses distributed data analytics and it is based on a
NoSQL database, compared to the relational database of
eBook Store. This setting gives us a greater variety of more
interesting scaling options.

2.1.1 eBook Store
eBook Store is a minimal three-tier web application [8].

An Apache load balancer sits at the front acting as the in-
terface for accepting requests from clients, which are then

distributed to the actual application. The application is
hosted on a number of Tomcat web servers forming a scal-
able cluster. At the back-end of the topology lies a MySQL
database. The application is a simple Java application which
issues a number of different requests (select, insert, update)
of variable intensity (i.e., number of records). We can con-
trol the type and intensity of the requests, which allows us to
stress test specific resources (CPU, memory, disk, network)
and activate particular scaling plans. The simplicity and
degree of control over this application give us the flexibil-
ity to extensively test various conditions and scaling actions
and devise a generalizable resource management strategy
for most kinds of web systems. On the other hand, despite
its simplicity, the architecture is popular and still relevant
for most real-world applications, which gives us a satisfying
level of applicability for the results of our study.

2.1.2 LEGIS
LEGIS was proposed and developed as an idea for the

design challenge of the SAVI project [12]. It provides high
throughput and low response time navigation services by an-
alyzing local traffic conditions in real time. It draws its ad-
vantages from having its data and functionality partitioned
in a geographically distributed multi-tier cloud platform. In
such a platform, ”smart edges” constitute low capacity but
high throughput cloud nodes, which can take up a large
number of small tasks and the core acts as the high capacity
datacenter, which can execute more demanding tasks and
store larger amounts of data. The edges can be geographi-
cally distributed, which allows us to partition traffic creating
responsibility zones. Within these zones, the edges accept
navigation requests and analyze only their traffic data to cal-
culate optimal travel paths. The edges communicate with
each other through an internal high-speed network to aggre-
gate the partial results into a single response for large paths
that span across multiple zones. By partitioning the traffic
data and localizing the analytics, we can achieve faster and
more accurate results.

The architecture of LEGIS is more complex than eBook
Store, as it introduces one additional layer of functional-
ity. The Apache load balancer and the scalable Tomcat
cluster are common between the two applications. LEGIS
has an additional scalable analytics cluster based on Apache
Spark. Finally, at the back-end of the topology, instead of a
single-node MySQL database, we have a distributed NoSQL
database cluster, based on Apache Cassandra. The appli-
cation accepts navigation requests and a set of alternative
paths is acquired from an external directions service. The
results are passed to the Spark cluster which accesses Cas-
sandra and based on the current traffic data annotates the
path segments with a score, which determines the navigabil-
ity of this particular path and its travel time. The annotated
path is then returned to the client.

This application represents a more realistic example of
modern data-intensive web applications, which allows for
more complex scaling strategies. Additional challenges may
rise with respect to resource management. We can con-
trol the intensity of the workload (based on the size of the
paths) and we can trigger scaling in two clusters, Tomcat
and Spark.

2.2 Apache Spark
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Apache Spark1 is a big data and distributed analytics ser-
vice similar to Google’s MapReduce [7] and Apache Hadoop 2.
Unlike these projects, however, Spark is more memory-intensive
rather than disk-intensive. This allows to perform much
faster analytics, with a potential tradeoff with respect to
the size of the tasks. The Spark cluster consists of a master
node and worker nodes. A cluster can be created3 either
directly in a standalone mode or using third-party cluster
managers like Apache Mesos4 or Hadoop YARN5.

The master acts as a load balancer/gateway. It accepts
job submissions from clients and then breaks it in tasks and
distributes those to the workers. Jobs are submitted as bun-
dled files (e.g., JAR files for Java jobs), along with their
dependencies, i.e., libraries and drivers for connections with
databases. The entire job file has to be sent to the work-
ers, so that they are capable of executing the individual
tasks. The master is responsible for marshalling the indi-
vidual responses from the workers into a single response to
be returned to the client. When a job is submitted a Driver
program, containing the context (configuration) of the job,
spawns Executor programs for the workers that will run the
tasks of the job.

2.3 Apache Cassandra
Apache Cassandra6 is widely used NoSQL wide-column

data store, which is regarded highly by the database com-
munity [11, 13]. It is a distributed data store, which, as
any NoSQL database, relaxes on ACID properties and guar-
antees availability with eventual consistency, which implies
that the system will respond to any request but there is no
guarantee that the response will be accurate or consistent at
the time of the request. Unlike other wide-column NoSQL
data stores, like Apache HBase7 or Accumulo8, Cassandra
is masterless, implying that there is no master node in front
of the workers. Cassandra works with a peer-based system,
where all the nodes communicate with each other. Never-
theless, when a Cassandra cluster is set up, apart from the
peers, there is also a seed, which acts as a master and knows
all the peers in the cluster so that it can set up the connec-
tions between them.

2.4 Docker
Docker is an open-source project that aims to facilitate the

development, deployment, delivery and execution of appli-
cations using containers. In practice, the mission of Docker
is to implement to the best degree possible the DevOps
paradigm [15, 5], which bridges the gap between develop-
ment and operation management. In this paradigm, the
developers focus only on building their software and not so
much on managing it as there are tools, which automate this
management as much as possible and also enable continuous
deployment and fast release cycle.

Containers are packages that contain everything an appli-

1http://spark.apache.org/
2http://hadoop.apache.org/
3http://spark.apache.org/docs/latest/cluster-overview.
html
4http://mesos.apache.org/
5https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/
hadoop-yarn-site/YARN.html
6http://cassandra.apache.org/
7https://hbase.apache.org/
8https://accumulo.apache.org/

cation needs (binary files, dependencies, libraries, configu-
ration files, etc.). This package, known as a Docker image,
contains the application and its execution environment and
makes it ready to be deployed in a container without further
configuration. Images are reusable and extendible to allow
for customizations. An application shipped as a Docker im-
age will run on any Linux system (and recently on Microsoft
Windows and Mac OS), regardless of what customizations
has been made to it. Unlike VMs, a container does not con-
tain an operation system, but rather inherits the host’s OS
to run. This way a container can be stripped of all files
required for an operation system, and have only the files re-
quired by the application and nothing more. Because of this,
the containers are lightweight, consume much less memory,
and start much faster than a VM. At the same time they
provide a high level of isolation (containers isolate applica-
tions from one another), thus providing additional security
by default.

2.5 Scaling: The MAPE-K loop
The design and development of adaptive software systems

usually follows the MAPE-K architecture [1]. According
to this architecture an autonomic management system has
four components for Monitoring, Analysis, Planning and
Execution. To achieve proactive or model-based adaptation
a Knowledge base may also be part of the management sys-
tem. Sensors, or monitoring agents, are deployed with the
managed software system and are responsible for gathering
performance or other measurements for the Monitoring com-
ponent. These are then passed to the Analysis module, so
that the health of the system is determined. If something
is found to be out of order, specific scaling actions, e.g.,
scaling resources, are planned for particular situations. The
planned actions are then passed to the Execution engine to
be applied on the system. This process is repeated in fre-
quent intervals to guarantee the system’s quality and normal
behavior.

Monitoring agents may gather measurements from multi-
ple sources, including the application or the infrastructure,
or even different components of the application. The com-
plexity of the analysis may vary from simple IF-THEN rules
to more complicated algorithms that are based on models.
Planned actions include simple adding or removing resources
in a static or dynamic manner or more sophisticated actions
that would affect the application’s configuration or other
non-functional parameters. Finally, in cloud-deployed sys-
tems, the execution of adaptive actions can be the responsi-
bility of an orchestration engine, like OpenStack’s Heat, or
a resource provisioning service.

2.6 DevOps
DevOps [10] can be considered as a novel development

process or model or paradigm or even philosophy. Its pri-
mary goal is to bridge the gap between development and
operation management. In this capacity, it recommends the
use of tools and processes, as well as knowledge and skill sets,
which would span across the entire lifecycle of the software.
The concept existed, even before it was named DevOps [14];
developers would tinker with system administration tools
and concepts to better understand how the software is to be
deployed, while IT operators would occasionally merge with
the development team to better understand the system’s
functionality and ensure higher quality. Thanks to virtual-
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ization technologies and the self-healing and self-adaptation
capabilities of modern system, DevOps is the beginning of a
new software development culture and a new breed of hybrid
developers and IT specialists.

Another mission of the DevOps model is to shorten the re-
lease cycle of the software [16]. The goal is for every change
to be incorporated seamlessly to the system in production,
while high quality is ensured and maintained [4]. Netflix is
already employing chaos engineering techniques [3], which,
in the context of DevOps, enables concepts such as contin-
uous deployment and continuous delivery.

Balalaie et al. [2] present their experience in migrating a
monolithic mobile back end as a service (MBAAS) to a mi-
croservice architecture. Apart from the common pains and
suffering of migrating a legacy system to a service-oriented
architectures, they had some interesting experience with re-
spect to the DevOps side of the process and the final sys-
tem. First, they had to change the team organization from a
horizontal structure (development, QA, operations) to more
vertical teams with all layers responsible for the smaller ser-
vices. Second, they report on the importance of monitoring
the system and, finally, on the use of containers to bridge the
gap between the development and the production phases.

3. IMPLEMENTATION OVERVIEW
Given our goal to study the DevOps aspects of multi-layer

and multi-tier data-intensive web applications, we started
our experiments with LEGIS on Docker containers. LEGIS
was developed prior to this study, but it was not fully pro-
filed. Therefore, while we had a general idea about its de-
mands, we did not have quantitative data about the appli-
cation’s performance. As a result we knew roughly what we
will need for the system in terms of resources, but we did not
know what we were to expect in terms of the application’s
performance and eventually about its scaling needs.

3.1 Docker Deployment
To deploy LEGIS on containers, we first had to set up

the Docker cluster. Installing the Docker Engine, the pro-
visioning service of Docker, on a single host is a straightfor-
ward process. For example, to install it on Linux Ubuntu
16.04, it is sufficient to run the command apt-get install

docker.io as root, and a functional engine will be deployed.
However, to take full advantage of the power of Docker, it
is recommended to be installed on multiple hosts in a clus-
ter. The resources available in those hosts (CPU, memory,
disk) will form a pool from which the containers will take
as necessary. However, when a container starts it will take
all resources it needs from a single host, the host it resides
in (i.e., a container that requests 2GB RAM won’t be able
to take 1GB from one host and 1GB from another one); if
no single host can satisfy the requirements, the container
creation fails.

In addition to the provisioning service, we also need a
cluster manager. Docker Swarm9 is the project that offers
native clustering functionality for Docker. The project aims
to transform a set of multiple Docker hosts into one large
virtual Docker host. In our deployment, one VM was com-
missioned as the cluster manager and hosted services criti-
cal for the function of the Swarm Cluster, and nothing else.
The rationale is that we wanted to isolate the cluster man-

9https://docs.docker.com/swarm/

agement node from the worker nodes. In the case that the
workers receive enough workload to saturate the VM, the
manager should remain unaffected. This decision was nec-
essary and important, since the goal of our experiments was
to create saturation and scaling scenarios. The rest of the
VMs in the cluster would assume the role of Swarm Nodes
and would play host for containers.

The Discovery Service.
In order to keep track of cluster members (Docker En-

gines that are joined to the cluster) and their IPs, Docker
Swarm makes use of a discovery service. In our experiments
we have used Consul10, but ZooKeeper11 and Etcd12 can
also be used. We installed Consul on the manager VM, and
started the agent in server mode with the command consul

agent -server -bootstrap. An important element to no-
tice here is the -bootstrap parameter, which tells Consul to
start in single mode and not wait other Consul servers. In a
distributed, highly dynamic environment it is recommended
to run multiple Consul servers; if one of them becomes inac-
cessible (crashes, network or hosts problems), the discovery
service can still be accessed through the other servers. This
means that the service provides High Availability (HA), an
important feature in distributed environments. In our exper-
iments the whole deployment was relatively small (no more
than 10 VMs for all services), and we have disabled the HA
functionality. The -bootstrap parameters tells the server
not to run its consensus protocol with the other servers, and
assume it will be the only one.

The overlay network.
Because the containers that will run in the cluster could

end up on multiple hosts, they need to connect to each other
and can do so only through the IPs of their hosts. As a con-
sequence, a container that runs Spark and wants to register
with the Spark Master container, must know the IP of the
host where the Spark Master is located. In addition, be-
cause on a host a port can be used only by one container
and there can be multiple containers running on the same
host, the ports used by containers cannot be known before-
hand. For example, the creation of a container that asks for
port 80 by specifying the parameter -p 80:80 could fail, if
another container has port 80 in use. Therefore, the cre-
ation of the container must instead use the parameter -p

80, letting the Docker Engine to choose a random port on
the host to which to bind port 80 from the container.

Spark Swarm offers a better solution to allow contain-
ers to connect to each other, overlay networks. An over-
lay network, with a particular <name>, can be created using
the command docker -H :4000 network create --driver

overlay --subnet=192.168.100.0/24 <name>. When start-
ing a container, it can be attached to this network and re-
ceive an IP on it by specifying the parameter --net <name>.
If the container also specifies a hostname (using the param-
eter --hostname, e.g., --hostname spark-master), then it
can also be accessed using simply the hostname. For exam-
ple, if there is a container on the overlay network with the
hostname spark-master that runs the Spark Master process
on the default port (7077), a Spark Worker could connect

10https://www.consul.io/
11https://zookeeper.apache.org/
12https://coreos.com/etcd/
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to it using the address spark-master:7077. The hostname
would be resolved by the DNS service provided by Swarm.

Docker images.
For our testbed applications we created custom Docker

images for all potential containers. These included a Tomcat
image with Java installed and the two applications deployed
on the server, an Apache2 load balancer image, a Spark
image with scripts to start either the master or the worker
services and the spark job for LEGIS, a Cassandra image
with scripts to load the traffic data and a MySQL image for
the eBook Store. Some of these images like the load balancer
or Tomcat can be used for both applications.

3.2 Application Deployment
Concerning LEGIS itself, we decided to simplify its struc-

ture and its functionality slightly to allow for more controlled
experiments. To this end, we deployed the service only in
one cloud region, with travel paths and traffic data only for
this region. We also used a precalculated path to avoid is-
suing requests to the external directions service to minimize
potential third-party failures. As a result, there is an exist-
ing JSON file with the path, which is forwarded to the Spark
cluster for annotation. Furthermore, we reduced the size of
the original path to include only a dozen segments for an-
notation to reduce the calculation time and allow for higher
throughput and faster experiments. Finally, we preloaded
the Cassandra data store with 2-hour worth of traffic data
for this particular data from the CVST project [6], which
gathers such data from the Greater Toronto Area in Canada.

There were no special considerations for migrating eBook
Store from VMs to containers and as soon as the images
were ready, the application was deployed as in our previous
experiments [8].

4. PROCESS AND EXPERIENCE
Having set up the Docker Swarm cluster with virtual ma-

chines and having prepared all the Docker images, we de-
ployed the LEGIS application on containers. Then, we ini-
tiated a simple workload generator, which simulates a con-
stantly increasing number of clients issuing requests to the
LEGIS service. After a few iterations, we started encoun-
tering the first problems.

4.1 Deployment and Delivery

Challenge 4.1.1 (Increasing Memory Utilization). We no-
ticed that memory utilization in both the Tomcat and Spark
clusters was increasing constantly, almost linearly, even after
requests were served and the clients received the respective
responses.

Option 4.1.1.1 (Cleanup and More Efficient Memory Utiliza-
tion). Our first action was to refactor both the web applica-
tion and the Spark job to make sure that there were no mem-
ory leaks and that the two pieces of software generally han-
dled memory in an efficient manner. After the refactoring,
we managed to significantly reduce memory consumption on
both clusters, but the utilization kept increasing steadily.

Option 4.1.1.2 (Multiple JVMs on Tomcat). Focusing on
Tomcat, we found that these particular containers reported
excessive memory consumption due to the fact that the web
application submitted Spark jobs through spark-shell and

for every request an new job was submitted and as a re-
sult a new Java process was created. Therefore, we decided
walk around this submission process, by having the job (the
bundle JAR file) already deployed in Spark and be able to
invoke the submission remotely via a REST API. We found
that Spark has indeed such an API, but it is hidden. This
implies that the API may not be fully tested or stable and,
as such, it is not part of the official documentation of Spark.
Nevertheless, we decided to use the API to address the mul-
tiple JVM problem. Indeed, the problem on Tomcat was
solved and memory consumption was regulated. However,
in Spark the problem persisted.

Option 4.1.1.3 (Zombie Processes). Zombie processes are
OS processes that finished their execution, but the result
code has not yet been consumed by the parent process. Zom-
bie processes occupy system resources (i.e., memory) that
need to be released. On a Linux system, the init process
removes the zombie processes, making sure to consume their
exit result even if their parent does not do so, thus releas-
ing all resources associated with it. In a container, where
there is no full operating system running, and the init pro-
cess does not exist by default, there is the risk of ending
up with zombie processes. It is the responsibility of the de-
veloper to make sure that all processes inside the container
terminate properly and release all the resources when they
finish. Eventually, after making the appropriate changes to
the Spark job, we fully addressed the problem.

Challenge 4.1.2 (Spark Jobs High Execution Time). Fo-
cusing on the Spark cluster, we noticed that it took jobs too
much time to finish, in the range of minutes. The simplicity
of our analytics, the fact that by default we had at least
two Spark workers and not too much workload yet did not
support the long execution time.

Option 4.1.2.1 (Network Issues). Having fixed the memory
issues and given the fact that our application did not have
any I/O operations and there was not much CPU utilization,
as our monitoring indicated, the only remaining source for a
bottleneck was network. Upon closer inspection we saw that
when an application submits a job, the whole bundle JAR
file is transmitted from the Master to all the workers. As it
happens, our job file was rather large due to a large number
of library dependencies. To solve the issue, we removed all
these libraries and load them in the Spark containers upon
creation. We also changed the Tomcat context on the ap-
plication side, so that it passes the dependencies’ location
to Spark job when this is submitted. This way we managed
to reduce the execution time to a few seconds, which agreed
with our measurements, when we executed the job locally.

Challenge 4.1.3 (Cassandra Crashes). During the first ex-
periments, we had Cassandra failing a few times. At the
same time, we also observed disk saturation to some Docker
hosts. Even though the two events were observed indepen-
dently, due to their temporal and spatial coincidence (the
saturated VMs were the ones that hosted Cassandra contain-
ers) led us to point out the correlation. When we focused
on this problem, we actually noticed that Cassandra was
collateral damage rather than the culprit. The real reason
for the disk saturation was Spark, whose containers were
sharing the same host with Cassandra and which, having
limited memory resources were relying on disk to complete
their tasks. This did not allow enough disk space for Cas-
sandra, which failed, causing also Spark workers to freeze.
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Option 4.1.3.1 (Keep Spark and Cassandra Separate). The
first solution to this problem is to actually make sure that
Cassandra and Spark containers do not end up in the same
host.

Option 4.1.3.2 (Keep Cassandra in VMs). Unfortunately,
when Cassandra containers crashed, data got lost and had
to be reloaded when the containers was restarted. This
prompted us to take a more permanent solution and take
Cassandra out of the swarm cluster in an independent and
persistent VM. We also refrained from executing any adap-
tation actions on Cassandra for fear of additional failures.

Challenge 4.1.4 (Containers Crash Without Trace). Thanks
to the experience with Cassandra and Spark containers fail-
ing, we noticed that when this happens, the container is
no longer accessible, which means that we have no access to
the deployed software log files either. This creates particular
problems when debugging the failure.

Option 4.1.4.1 (Write Logs to Mounted Volume). Logs can
be written to files directly in the host VM by mounting
the target folder as a volume to the container. This way
log files will persist even after the container fails. However,
mounted volumes generally carry security risks, due to con-
tainers sharing hosts, and, thus, additional attention needs
to be paid in this case.

Option 4.1.4.2 (Main and Secondary Processes). We noticed
that a container fails when its main process fails. Having our
deployed software (Tomcat, Spark, Cassandra) as the main
process, when something went wrong in our experiments, the
entire container would fail. For this reason, we found it more
prudent to start containers with another program as the
main process (e.g., bash) and add our software as another
process. This way we can still access the container even after
our software fails, and be able to inspect the failure.

Challenge 4.1.5 (Multiple Network Interfaces). Some ap-
plications, like Apache Spark, require to bind to a specific
network interface (NIC) and not to the generic 0.0.0.0 which
would enable to receive connections on any interface. If the
container has multiple NICs (which is not uncommon, con-
sidering that one NIC is the bridge to the host and an-
other one is used by the virtual overlay network), then, at
container startup, the correct binding IP address must be
known inside the container. The exact address cannot be
known before the container starts and receives one from the
Docker Engine.

Option 4.1.5.1 (Environmental Variables). A possible solu-
tion is to use environmental variables (-e flag for the docker

run command) to pass information inside the container, which
would be used in scripts to extract the right address. Passing
the name of the network interface (i.e., eth0) is challenging
because the names of interfaces are not always the same (it
is possible that in a container with multiple NICs, none of
them is named eth0).

Option 4.1.5.2 (Inspect Container). Another solution is to
run inside the container the command docker inspect ...,
if the file /var/run/docker.sock from the host is shared
with the container, and find the container address in the
response. This, however, requires that the docker engine is
installed inside the container.

4.2 Management and Scaling

Moving from deployment to management, we realized that
we are working with two new concepts, for which we were
not overly familiar, Docker and Spark. To this end, we were
not always certain about the source of some of our problems.
Therefore, we decided to divide the work and, on one hand,
work with eBook Store on containers, for which we knew
the details of the application, and on the other hand, with
LEGIS on VMs, which had not tried before. Eventually, we
were able to also deploy LEGIS on containers.

Deploying eBook Store in containers did not present any
particular challenges, mainly because we knew all the details
about the application and we had previously addressed most
deployment problems during our LEGIS work. New prob-
lems started rising after we began to stress test the applica-
tion with intense workload, both in frequency and in size in
terms of number of clients. Stress testing would eventually
create saturation points, which will require adaptation and
scaling.

In order to enable autoscaling for the containerized topol-
ogy of eBook Store, we had to implement the MAPE-K loop.
We considered it unnecessary to focus on sophisticated anal-
ysis and planning components, because, first, simpler meth-
ods are already in use by practitioners in actual projects,
and, second, our intention was to see if and how is scaling
itself possible in such topologies. In addition, execution was
simple enough to take care of, thanks to Docker commands
and the Swarm manager, which allowed us to add containers
to the cluster given an image.

Challenge 4.2.1 (Monitoring Containers). Eventually, what
remained to be explored was monitoring of containers. Docker
provides a REST API to access monitored metrics for con-
tainers. The API returns metrics for CPU, memory and
bandwidth consumption for a specific containers. However
the metrics were not as straightforward as the ones returned
by tools operating on the VM level and with which we were
more familiar, like Ceilometer for OpenStack or CloudWatch
for Amazon EC2. In addition, the official Docker documen-
tation on monitoring focuses mostly on how to access the
API for a specific container, but without adequate details
on how to interpret the response.

Option 4.2.1.1 (Interpreting Metrics from Docker Stats).
Eventually, after looking into side documentation sources,
like forums or StackOverflow (including the source code repos-
itory of Docker), we found that the Docker API returns mea-
surements of pure consumption in raw format, i.e., bytes
of memory or I/O and nanoseconds of CPU time. Given
this raw format, we have to transform the measurements
in percentages to express utilization. The API reports the
last measured metric and the current measurement, which
was requested. To get the final metric, we normalize the
difference between the two measurements over the “system
available”. Formally,

Cpu% = 100 × ContainerCpucur − ContainerCpupre

SystemCpucur − SystemCpupre

Challenge 4.2.2 (Inconsistencies in Monitoring). Having
started our workload generator, which progressively increased
its intensity, and while reading the measurements from mon-
itoring both host VMs and containers, we made certain ob-
servations that did not make full sense. Most importantly,
we saw the response time of the application climbing to high
levels, while the containers and the VMs did not report any
saturation on any metric (CPU or memory).
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Option 4.2.2.1 (Metrics per Core or per VM). Looking into
the Docker source code revealed another fact about mon-
itoring; the measurements pertaining to CPU are in fact
cumulative for all the cores of the host VM. Therefore, for
example, if the host has 4 cores, the measurements range
from 0 to 400%. This misinterpretation led us to present
wrong results and prevented us from predicting the satura-
tion of the containers. By correcting the normalization step
of the calculations fixed this issue.

Challenge 4.2.3 (No Effect of Scaling). In the first exper-
iments with eBook Store, when the topology became sat-
urated and the scaling actions were triggered, we noticed
that the actions had no effect to the application’s perfor-
mance and the containers remained saturated. When we
investigated the problem, we understood that when Docker
deploys a container on an empty VM host, the container
takes all available resources. When a second container is
deployed in the same VM, the resources are simply split be-
tween the two containers. If the host is already saturated,
the new container will take very limited or no resources at
all, rendering the scaling action mute.

Option 4.2.3.1 (Scaling VMs). In this scenario, upon satu-
ration and before the new container is added, it is better to
scale the host VM either up (i.e., increase its size) or out
(i.e., add a new host VM in the Swarm cluster). However,
having to scale the VM cluster removes any obvious advan-
tage of using containers with respect to managing resources
efficiently and in a cost-effective manner.

Option 4.2.3.2 (Putting Restrictions on Container Resources).
To better alleviate this situation and better design the man-
agement of containers, we decided upon restricting the re-
source allocation to containers. Docker gives this option
when creating and starting a container. In practice, this
creates “blocks” or “units” of deployment. The expectation
is that adding these blocks in the host VMs as part of the
scaling process will indeed have a positive effect on the per-
formance of the application. In this context, a host VM or
a Swarm cluster will become saturated once they run out
of space to host additional blocks. This creates the notion
of capacity for the VMs in terms of containers, simplifying
the concept of scaling and, thus, bringing us closer to the
DevOps paradigm.

Challenge 4.2.4 (Restrictions on Container Resources).
Deciding upon restricting containers is in fact easier than
actually implementing it. In our experiments, there are
two kinds of restrictions that we have applied to contain-
ers: memory and CPU. Memory is more straightforward and
poses no particular challenges: out of the total amount of
memory available in a host (e.g., 8GB in our case), we allo-
cated to the container only a fraction (1GB). The container
would not be able to use more when it used its quota and
would show signs of saturation. On the other hand, CPU
restrictions are more challenging as in practice they require
the implementation of a timeshare between the containers
on the CPU capacity of the host.

Option 4.2.4.1 (Imposing CPU Restrictions on Containers).
For CPU restrictions, we have used the --cpu-period and --

cpu-quota parameters when starting a container. These two
parameters, together, influence the Completely Fair Sched-
uler used by the host operating system to allocate CPU
time to containers. Although the containers are managed

by the Docker Engine, they essentially run as processes on
the host operating system, making use of the cgroups—or
control groups—feature of a Linux kernel. The two param-
eters are sent directly to the operating system when such a
process is created. The intuitive way to understand these
parameters is for every cpu-period microseconds that pass,
the container is allowed to use only cpu-quota microseconds.
If the container requires more than its allocated share, then
it will be throttled by the operating system. It is important
to note here, that the access to resources—memory, CPU—
is managed directly by the host’s operating system, and not
by the Docker Engine.

This interpretation is straightforward when the host has
only one vCPU, i.e., virtual core. If the host has multiple
cores, For example 4, then for every cpu-period microsec-
onds, there are 4×cpu-period microseconds of usable time
on the CPU (one cpu-period for each core). Out of this
4×cpu-period microseconds, the container is allowed to use
only cpu-quota microseconds.

If the container is configured to use the entire CPU of the
host (i.e., cpu-period is 1000 and cpu-quota is 4000), then
the container will become saturated when it reaches 400%
host CPU utilization. If the container is configured with
cpu-period set to 1000 and cpu-quota set to 1000, then the
saturation will be reached when the host CPU utilization is
at 100%.

Challenge 4.2.5 (Saturation of the DNS Service). After
a number of experiments with eBook Store and successful
scaling of the container topology, we suddenly noticed that
response time was going up, without containers reporting
any kind of saturation, and the arrival rate, i.e., the number
of requests received by the application per second from all
users, was capped at approximately 80 requests per second.
Naturally, one would expect that with the response time
growing, the arrival rate to decrease due to the users lack of
ability to issue requests faster. This suspicious behavior led
us to further investigate the issue and we found that it was
the Docker DNS service that was getting saturated. The
problem was that all the communication between contain-
ers was conducted based on hostname. Therefore, for every
connection to be established, Docker had to look into the
DNS service, find the corresponding IP and then establish
the connection. Apparently, the service could only accept
upto 80 concurrent requests per second. The phenomenon
was more evident early on in the load balancer, which had to
forward the incoming requests to Tomcat servers. This was
confirmed by the increase of CPU utilization of the load bal-
ancer (under normal circumstances, the load balancer takes
insignificant load).

Option 4.2.5.1 (Scale Up the Swarm Manager). One pos-
sible solution is to increase the size of the VM that hosts
the Swarm Manager, which holds the DNS service. In our
experiments, we increased the size of the Manager host from
medium to large, which allowed to surpass the cap of the 80
requests per second. However, the cap reappeared a little
bit later at 100 requests per second, which showed that this
solution can at best be a temporary fix.

Option 4.2.5.2 (Use IPs instead of Container Names). The
more prudent option is to use directly the IPs of the con-
tainers instead of the names and completely bypass the DNS
service. Nevertheless this is not trivial, mainly due to the
overlay network. IPs may not be known at design time, or
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even at scaling time, which may result in delays or even
worse in non-established connections.

Option 4.2.5.3 (Cap the Arrival Rate). Eventually, for our
experiments, we decided upon another temporary fix, which
was to make sure that the arrival rate, as it comes from the
workload generator, does not reach the cap set by the DNS
service. At the same time, we increased the demand of re-
quests for CPU to achieve the desired saturation conditions
earlier on.

Challenge 4.2.6 (Spark Driver-Executor Deadlock). Hav-
ing a relatively successful scaling experiment for eBook Store,
we moved on to work with LEGIS. With all the deployment
problems fixed, we managed to get a few iterations in the
LEGIS experiments with some scaling as well. After that, we
experienced a similar problem to the DNS cap from the pre-
vious experiments; requests stopped getting accepted after
some point (and in fact were decreasing with time), without
any indication of saturation. Identifying the source of this
problem was easier in this case. The Spark Master graphical
interface informed that the problem was in fact with Spark
and not with Docker. When a job is submitted a Driver pro-
cess is created to manage the individual tasks that will be
handled by the Spark workers. A Driver takes up one CPU
core and some memory, as indicated in the configuration of
Spark. The Driver will spawn Executor processes for every
task in a Spark worker. The Executors also require one core
and memory. In the case that many requests arrive in the
system and many Drivers need to be created, we end up in a
deadlock; Spark creates all the possible Drivers, which take
up all the available resources, leaving nothing for Executors
to be started. At this point, it seems that Spark does not do
resource allocation in an optimal manner, as it gives priority
to all managing processes, i.e., Drivers, and not to the pro-
cessing ones, i.e., Executors, which upon termination will
release all resources. Given the cyclic dependence between
the two processes (an Executor needs a Driver to start, but
a Driver needs the Executor to finish first), Spark should
make sure to start the entire pair, before starting to serve
new requests.

Option 4.2.6.1 (Scale Up Host VMs for Spark). One straight-
forward solution to problem is to increase the size of the
host VMs and the restrictions on the containers that hold
the Spark processes. This will make more resources (vCPU
and memory) to become available for Spark jobs. However,
as in the first option for the DNS cap problem, this is a tem-
porary fix and the problem will recur once the arrival rate
is further increased.

Option 4.2.6.2 (Better Memory Monitoring). Eventually, what
needs to be done is better resource management. CPU cores
are not necessarily a significant problem, because for Spark
cores mainly represent threads, which means that upon sub-
mitting the job we can inform Spark that there is an arbitrar-
ily large number of cores available in the host container or
VM. This transfers the problem how many connections the
service can accept, but this number is usually larger than
the number of cores and it can handle a large enough ar-
rival rate. Memory, on the other hand, has to correspond to
the actual memory of the host resource. For this problem,
we need to have handles, which make sure that there will
be enough memory to spawn at least one Executor before
spawning a new Driver. With at least one Executor in the
queue, this means that once the process finishes, resources

for two processes are released and we can spawn new ones,
at least one of which will have to be an Executor.

5. EXPERIMENTAL RESULTS
Throughout our study we conducted a large number of

experiments varying in duration and settings, which helped
us identify the challenges and evaluate the options we re-
ported previously. Eventually, we narrowed it down to four
experiments (or sets of experiments), in which we were able
to clearly demonstrate autoscaling capabilities for contain-
ers. Two experiments concerned the eBook Store applica-
tion; one with linearly increasing workload on Amazon EC2
and one with variable workload on SAVI [12], an OpenStack
research cloud. Another two experiments were conducted
with LEGIS on SAVI with linearly increasing workload, one
on VMs and another on containers.

Figure 1 shows the results for eBook Store on Amazon
EC2 with linearly increasing workload. The top plot shows
the CPU utilization of the two Swarm hosts (worker 1 and
worker 2). The second plot shows the CPU utilization of
the containers (for MySQL, load balancer and the average
for the Tomcat web workers). The bottom plot shows the
arrival rate in requests per second and the response time in
seconds. The two halves of the plots correspond to different
settings with respect to resource restrictions on containers.
In this case, we define 1 unit of computation (C) (i.e., one
container block) having 12.5% CPU out of 200% (for two
cores) and 512MB RAM out of the total 8GB of the host.
We configure the load balancer and the MySQL to take 4C
each and the Tomcat workers 1C each. With two Swarm
hosts and by putting the load balancer and the database in
the first, this means we have capacity for 24 web workers; 8
in the first host and 16 in the second. In the right half of
the plot, the configuration is 6C for the load balancer and
the database, which leaves 20C for web workers, 4C in the
first host and 16C in the second host.

The results clearly show that, when we reach the capacity
of the hosts (24 and 20 of web containers respectively for the
two halves), we also saturate the host VMs in terms of CPU
utilization. Additionally, we see that scaling the web layer,
we managed to maintain the average CPU utilization within
the desired range, between 60% and 80%. The leftmost plot
shows that there is an early saturation of the load balancer
and of the database, which prevented us from issuing more
requests. When we increased the allocated capacity to the
corresponding containers (from 4C to 6C), we were able to
achieve higher throughput until the web workers were sat-
urated and at which point, that we reached its container
capacity, the Swarm host was also saturated.

Figure 2 shows the results for eBook Store on the SAVI
cloud with variable workload. In this experiment, the re-
strictions are defined so that 1C has 1GB RAM out of 8GB
of the host and 12.5% CPU out of 400% (for 4 cores). The
load balancer has 6C, MySQL has 4C and each Tomcat
server takes 1C, as previously. For three Swarm workers,
this leaves capacity for 14 Tomcat workers in total. The
CPU utilization thresholds for the Tomcat workers were 60%
and 90% respectively. Given that the workload does not in-
crease infinitely in this scenario, we never reached the hosts’
capacity in terms of containers. However, our reactive au-
toscaling works fine, maintaining the web workers’ utiliza-
tion within range and, as the plots show, the number of
containers smoothly follows the arrival rate.
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Figure 1: eBook Store on Amazon EC2 scaled on
containers with linear workload.

Figure 3 shows the results for LEGIS on VMs. The pur-
pose of this experiment was to focus only on Spark, without
Docker, to see if we are able to activate autoscaling and what
would be the effect of scaling multiple tiers. The results show
that we are capable of multi-tier autoscaling. The process
managed to maintain average CPU utilization for both lay-
ers within range, which, for this experiment, was set between
30% and 70% of CPU utilization.

Finally, Figure 4 shows the results for our ultimate goal,
scaling a multi-tier data-intensive application, LEGIS, on
containers. A linearly increasing workload was used in this
experiment, while the unit of computation was defined as
having 256MB RAM out of 8GB in the host and 12.5% CPU
out of 400% (4 cores). The load balancer, Spark master and
each of the Spark workers were assigned 4C, while Tomcat
workers were given 1C each. In three Swarm hosts, this
meant we had a capacity between 20 Spark worker containers
and 2 Tomcat workers to 1 Spark worker and 80 Tomcat
workers. The utilization thresholds were set between 60%
and 80% for Tomcat workers and between 40% and 80% for
Spark workers. The results show good scaling capabilities
to accommodate an increasing workload, especially on the
Spark tier, good maintenance of the response time, until
saturation was reached on the VM that hosted the Spark
workers. On the negative side, we observe oscillation with
respect to CPU utilization, but this mostly due to the nature
of the application (longer tasks with higher intensity).

6. CONCLUSIONS
In this work, we reported our experience with developing,

deploying and eventually managing data-intensive applica-
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Figure 2: eBook Store on SAVI scaled on containers
with variable workload.
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Figure 3: LEGIS scaled on VMs.
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Figure 4: LEGIS scaled on containers.

tions on container-based cloud infrastructures. We focused
on two application, a simple three-tier one with Tomcat
and MySQL and a more complex four-tier one with Tom-
cat, Spark and Cassandra. The goal of our study was to
explore and identify the challenges and pitfalls of these pro-
cesses and eventually present stable and working settings for
achieving autoscaling with containers for such web applica-
tions. Our experiments show that the decisions we made
during the exploratory part of our study led to an appro-
priate and meaningful autonomic management system that
operates on multiple layers (containers and VMs) for com-
plex applications with more than three tiers of functionality.

Our study required significant effort and time before we
were able to accomplish the desired experiments. In ad-
dition, we had to go through unconventional channels, in-
cluding developer forums, source code repositories and Q&A
sites, to find answers to several of our problems, especially
concerning monitoring and putting restrictions on contain-
ers, which lead us to believe that Docker does not have de-
tailed enough documentation, especially for developers not
familiar with the technology. Moreover, to the best of our
knowledge, we are one of the first research teams to stress
test Spark clusters and Docker containers, although more

with respect to throughput rather than intensity of analytics
jobs, which revealed several limitations of the two technolo-
gies. Finally, for every problem we encountered, we con-
sidered a set of options and we chose the one that would
progress our work in an expedite manner to allow us to run
our experiments. At no point do we claim that we picked the
best possible solution, or that we considered all possible so-
lutions. This is an ongoing work and, with the accumulated
experience from this study, we expect to continue improv-
ing upon our tools and methods. Eventually, we anticipate
that this work will serve as a useful guide for practition-
ers and researcher, who embark on the development of such
data-intensive containerized web applications.
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