
A Hierarchical Architecture for Distributed Security
Control of Large Scale Systems

Yar Rouf, Mark Shtern, Marios Fokaefs and Marin Litoiu

Department of Electrical Engineering and Computer Science

York University

Toronto, ON, Canada

yarrouf@my.yorku.ca, mark@cse.yorku.ca, fokaefs@yorku.ca, mlitoiu@yorku.ca

Abstract—In the era of Big Data, software systems can be
affected by its growing complexity, both with respect to functional
and non-functional requirements. As more and more people use
software applications over the web, the ability to recognize if
some of this traffic is malicious or legitimate is a challenge. The
traffic load of security controllers, as well as the complexity of
security rules to detect attacks can grow to levels where current
solutions may not suffice. In this work, we propose a hierarchical
distributed architecture for security control in order to partition
responsibility and workload among many security controllers.
In addition, our architecture proposes a more simplified way of
defining security rules to allow security to be enforced on an
operational level, rather than a development level.

Keywords-security control, cloud computing, ddos

I. INTRODUCTION

As the Internet grows at a high rate and an increasing

number of people and devices become interconnected over

the web, large amounts of traffic are generated for software

systems. From a security perspective, on one hand, it may

not always be possible to filter all incoming requests and, on

the other hand, there are more sophisticated cyber attacks. To

mitigate the workload and rule complexity problems in secu-

rity control, our proposal is for a hierarchical and distributed

architecture. In the first layer, we partition incoming traffic

among numerous intrusion detection system (IDS) monitors,

which apply partial security control. In the second layer, there

is a scalable analytics cluster, which uses business rules to

aggregate the output of the IDS nodes and create a more

complete picture for the system’s security state. The rules

and the cluster are organized in a hierarchy to progressively

address more complicated intrusions. In this work, we present

the general architecture of such a system and a set of prelimi-

nary experiments to expose the scalability problem of security

control systems and the capacity of our proposal to solve it.

II. ARCHITECTURE

Figure 1 shows the mental process of constructing the

proposed architecture, as motivated by the problem at hand;

security control may fail under heavy load in the face of

complicated attacks. Figure 1a shows a standard topology for

security control with a single IDS monitor in front of the

applications. Under heavy load, the IDS starts failing in its

cause; due to its limited capacity, it can no longer filter all

incoming traffic and it starts to drop packets. The solution to

this problem is a distributed set of multiple IDS so that the

workload is spread among them (Figure 1b). This will decrease

the drop ratio, but allow more sophisticated attacks through.

To mitigate the increasing complexity of security threats, we

can also partition the responsibility of IDS nodes so that they

can analyze incoming traffic based on simpler sets of rules.

However, this creates additional gaps in security due to lack

of information. Therefore, on top of partitioned rule sets, we

also need a hierarchical decision mechanism, which will be

able to detect threats based on more complicated rule sets, but

derived from partial information alerts coming from the IDS

nodes.

The proposed architecture stems from the solution devised

in Figure 1c, a hierarchical and distributed security control

system. In this system, regular traffic enters the system through

a cluster of IDS monitor nodes. The workload is distributed

between IDS nodes, as are the security rules to relieve the

analytics load on each node. Each IDS has the capacity to

identify intrusions on each own based on the localized traffic

data it receives, in which case it creates alert traces. The

alerts are then forwarded to the Business Rule Engine (BRE)

cluster for further analysis. The business rules are implemented

as an analytics job to which there is a map function, i.e.,

analyze alert traces from IDS according to business rules, and

a reduce function, i.e., aggregate map results to make more

complete decisions for a larger part of the system. In a deep

hierarchy with multiple intermediate BRE nodes, every node

is reducing partial results from each children, while the root

of the hierarchy reduces all results to create the complete state

of the system and take actions on a system level. Depending

on the completeness of information, even intermediate nodes

can take action. Once a set of alerts is identified by the BRE

as an actual attack, action is taken.

Figure 2 shows examples of the data that flows through

the system. At the top we see an example of an alert as it is

generated by the IDS. The next trace in the figure corresponds

to the IDS rule that generated the previous alert. The bottom

trace shows the business rule to process the corresponding

IDS rule. In order to render the IDS alert consumable by the

BRE, we develop a translator middleware. In practice,

this is a simple parser/serializer that transforms the alert trace

into an object, so that the BRE can directly access the alert’s

properties.

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.64

118

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.64

118

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.64

118

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.64

118

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.64

118

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.64

118

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.64

118

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.64

118

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.64

118

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.64

118

(a) Standard security control with a single
IDS node.

(b) Distributed security control with mul-
tiple IDS nodes.

(c) Proposed architecture for distributed
and hierarchical security control.

Fig. 1: Various topologies for security control.

Fig. 2: Examples of (a) Snort alert, (b) Snort rule, (c) Drools rule.

III. EXPERIMENTS

We designed four experiments to show (a) how a monolithic

IDS fails under high traffic even without a DDoS attack

(Exp1), (b) the same setting with a DDoS attack (Exp2),

(c) how a distributed IDS architecture fails due to partial

information (Exp3), and (d) how a distributed and hierarchical

architecture, based on both IDS and BRE, can aleviate both

situations (Exp4). To set up the experiments, we used iPerf

[1] to emulate regular traffic and Skipfish [2] to inject a

DDoS attack in the regular traffic. Snort [3] was used as

the IDS monitor, Drools[4] as the BRE and Spark [5] as the

analytics engine. WordPress [6] was used as our application.

We generated high traffic in the amount of 300, 400 and

500Mbps. In the first two experiments, we used a single Snort

node with 891 community rules[3]. For the third experiment,

we used 2 Snort nodes with the workload split randomly in

half and the rules also split in half (approximately 450 for

each node). Finally, in the fourth experiment, we deployed the

2 Snort nodes as previously, but now feeding their alerts to a

Spark cluster with a single worker and the Drools rule from

Figure 2 as the Spark job. Our IDS focuses on generating two

kinds of alerts: HIGH TRAFFIC (if more than 250 requests

come from the same IP in 5 seconds) and DDoS (if more

than 500 requests come from the same IP in 5 seconds).

All experiments were executed 10 times and we report the

averages.

TABLE I: Experimental results.

Traffic
Inten-
sity

Experiment Packets
Dropped

High Traffic DDoS

300Mbps

Exp1 3.86 N/A N/A
Exp2 10.81 NO NO
Exp3 0—0.01 6—4.9 NO
Exp4 0—0.04 6—3.9 YES

400Mbps

Exp1 21.46 N/A N/A
Exp2 27.32 NO NO
Exp3 0—0.78 5.9—3.6 NO
Exp4 0—1.15 5.9—2.4 YES

500Mbps

Exp1 31.44 N/A N/A
Exp2 33.80 NO NO
Exp3 0—2.47 5.1—2.5 NO
Exp4 0—2.159 5.8—2 YES

Experimental results are presented in Table I. Exp3 and

Exp4 have two values reported, one for each Snort node. In

Exp1 and Exp2, it can be seen that the amount of packets

dropped (reported as percentage in the table) increases rapidly

along with the traffic. As a result, Snort cannot generate any

alerts, even when there is an attack. When we add a second

Snort node, almost no packets are dropped and high traffic

alerts start to get generated, although still with decreased

frequency as the traffic increases, but there is no detection of

DDoS, due to impartial information. When we add the BRE

cluster, DDoS is correctly detected. Overall there were two

exceptions in our experiments; in one iteration of Exp3, the

system actually managed to detect a DDoS attack, while in a

single iteration of Exp4, the system did not manage to detect

the DDoS attack.

IV. CONCLUSION

In this work, we identify that current security control sys-

tems suffer from scalability problems. For this reason, we pro-

pose a distributed and hierarchical security control architecture

to handle high workloads and more complex security rules.

Preliminary results are promising about the capabilities of the

proposed architecture. In the future, we plan to experiment

with real applications and more realistic workloads, as well as

with a greater variety of security vulnerabilities and attacks.

Moreover, we plan to investigate the effect and challenges of

deeper hierarchies in the BRE cluster.

119119119119119119119119119119

REFERENCES

[1] ”The TCP, UDP and SCTP network bandwidth measurement tool”.
[Online]. Available: https://iperf.fr/. Accessed: Feb. 13, 2017.

[2] ”skipfish,”. [Online]. Available: https://code.google.com/archive/p/skipfish/.
Accessed: Feb. 13, 2017.

[3] ”Network intrusion detection and prevention system,” 2017. [Online].
Available: https://www.snort.org/. Accessed: Feb. 13, 2017.

[4] ”Drools - business rules management system (Java, open source),” Drools,
2006. [Online]. Available: https://www.drools.org/. Accessed: Feb. 13,
2017.

[5] ”Apache Spark - lightning-fast cluster computing,”. [Online]. Available:
http://spark.apache.org/. Accessed: Feb. 13, 2017.

[6] ”WordPress.com: Create a website or blog,”. [Online]. Available:
https://wordpress.com/. Accessed: Feb. 13, 2017.

120120120120120120120120120120

