
A Smart Testing Framework for IoT Applications

Brian, Ramprasad

York University
brianr@yorku.ca

Joydeep, Mukherjee

York University
jmukherj@yorku.ca

Marin, Litoiu

York University
mlitoiu@yorku.ca

Abstract—The number of IoT devices has been growing ex-
ponentially as new products are developed and legacy systems
become Internet enabled. As a consequence, the large amount
of traffic generated by IoT devices require new approaches to
network architecture design. The primary challenge with IoT
devices is that the traffic can be highly variable due to the
device type and the time of use. In order to maintain Quality
of Service standards in a dynamic IoT network, these traffic
patterns need to be modeled and understood so that we can
adapt the architecture dynamically to maintain a desired level
of Quality of Service. To this effect, we propose a Smart Testing
Framework that can detect bottlenecks and predict the demand
for computing resources in a dynamic IoT network. Results
obtained from using our framework indicate that we can predict
the demand for computing resources in a dynamic IoT network
with a high degree of accuracy.

I. INTRODUCTION

With a growing increase in the volume and variety of

connected IoT devices, the demand on the supporting IoT

network infrastructure is constantly changing. IoT applications

that process data from the connected IoT devices require

an IoT network architecture that can handle a huge bulk

of data from a large number of IoT devices. IoT networks

developed currently are typically heterogeneous in nature, i.e.,

there are many different types of IoT devices that behave

differently which are connected to the network. This is in

contrast to homogeneous IoT networks where all IoT devices

are identical.
One of the key challenges with heterogeneous IoT networks

is maintaining the quality of service (QoS) because of the

fluctuations in the number of active devices and the data they

produce [1], [2], [3]. Fluctuations occur because IoT devices

may operate under different time of use policies to save energy,

IoT devices may fail in the network or their up link to the

Internet may be temporarily down. Being able to reliably

predict resource utilization in a dynamic heterogeneous IoT

environment can help overcome some of the QoS challenges

associated with scaling IoT networks. Prediction with high

accuracy allows us to plan ahead in preparing for changes

in demand on the IoT network. For e.g., some critical IoT

applications that are used in the medical field require that the

data be processed with minimal latency [4]. If the resource

utilization in the supporting IoT network becomes too high

due to an increase in the number of IoT devices, this may

impact the time to process the data by the application. Hence,

the QoS for such IoT applications can degrade and this can

have serious consequences in medical systems.
Our work is focused on understanding the behavior of

highly dynamic and heterogeneous IoT networks. Specifically,

we aim to detect the resource bottleneck in a heterogeneous

IoT network. Furthermore, we also focus on predicting the

resource utilization in an IoT network when more IoT devices

are added to it. This is important since the lack of knowledge

regarding bottlenecks in IoT networks can cause the QoS

of IoT applications to degrade. As described before, QoS is

important for certain types of IoT applications that require fast

processing where end users need fast answers to queries. For

example, if it has been agreed that a query on a set of IoT

data should take no longer than 3 seconds to complete, then

we should be able to predict at what resource utilization level

the query takes longer than 3 seconds to complete. We aim to

achieve these objectives by answering the following research

question: Can we identify a bottleneck and trigger an adaptive

action by using a prediction algorithm before a service level

violation occurs in a heterogeneous IoT network?

Identifying bottlenecks in IoT networks is a challenging

problem since the devices that are present on a heterogeneous

IoT network are constantly subjected to change. Since the

volume and variety of IoT devices on a heterogeneous net-

work can be dynamic, it becomes a challenge to predict the

need for computing resources. Therefore an investigation and

comparison of bottleneck prediction methods is an important

process that IoT network architects must undertake before one

can be confident that the system will perform according to

established QoS levels.

In this paper, we develop a novel resource utilization

prediction engine for IoT applications based on a Smart

Testing Framework for Adaptation. This allows us to execute

repeatable experiments to learn about IoT device resource

utilization so that we can trigger adaptations to add or remove

computing resources. The framework also allows for new pre-

diction modules to be implemented including learning models

through a systematic collection of historical data and analysis.

For example, we can set the data collection feature of the

framework to continuously monitor the IoT device count and

type on the network and the corresponding system resource

utilization. We can then store this information in a persistent

database in order to generate a dataset. This dataset can then

be used to train a model that can predict resource utilization

in an IoT network.

The smart testing framework is implemented on the Em-

ulated Internet of Things or (EMU-IoT) platform developed

at York University. EMU-IoT is a containerized IoT emu-

lation environment where software defined IoT devices can

be instantiated at scale to simulate near realistic traffic on

IoT networks. We modeled heterogeneous IoT networks on

252

2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion)

978-1-7281-0359-4/18/$31.00 ©2018 IEEE
DOI 10.1109/UCC-Companion.2018.00064

this platform where we had a combination of devices that

produce small and large amounts of data. We executed two

types of experiments. First, we executed experiments using an

exhaustive search to determine the number of IoT devices to

reach a target resource utilization. This data was then used

as input for a linear regression prediction model to find the

device count for a unknown CPU utilization target. We were

able to show that predicting the usage patterns of light weight

IoT Devices can be done with linear regression models with

a high degree of accuracy.

II. SMART TESTING FRAMEWORK

In this section we describe the various components of our

proposed Smart Testing Framework and how it will help us

to achieve our research goals of being able to intelligently

trigger scaling adaptations in highly dynamic heterogeneous

IoT networks.

A. Test Cases

Test cases are designed to allow us to model and investigate

the behavior of an IoT application in response to a particular

scenario on the IoT network. For example, in a smart building

we may want to activate IoT environmental control devices

during the day and shut them down at night. So, to emulate

this scenario we would define the rules to generate a test case

that creates IoT devices at certain times of the day. There are

several scenarios in which we emulate these test cases: Geo-

graphical Distribution, Temporal Distribution, Heterogeneity,

Network Connectivity Variety, Network Protocol Variety, and

Infinitely Scalable Design. For example, in Fig. 1 we model

the scenario where we create IoT Devices on until we reach

a CPU resource utilization target and then signal a scaling

action.

while CPU Utilization <= "80%"
Create "n" of IoT Device Type "A", every "5"

seconds
Create "n" of IoT Device Type "B", every "5"

seconds
if CPU Utilization in Application "A" > "80%"
Trigger scaling action to add more

resources.

Fig. 1. Rules for Scaling

B. State Machine

The primary component of the Smart Testing Framework

is the state machine, as shown in Fig. 2. The state machine

controls the process of creating workloads and detecting

bottlenecks in the IoT network. There are three distinct states

that the machine can be in until it exits.

1) Generate Test Case
Based on the type and configuration of a test case, a

new case is created each time this state is reached.

This means that a new set of IoT devices is created

or removed and there will be a resulting change in

Fig. 2. Smart Testing State Machine

the traffic on the network that can be observed and

monitored. The test case can be generated based on a

set of predefined rules or a set of rules generated by the

prediction engine that will be discussed later in Section

II-C.

2) Collect Resource Utilization
In this state, the resource utilization is checked in real

time to see if the defined target utilization has been

reached when more IoT devices are added to the IoT

network. The resource utilization information is polled

from the server periodically and checked to determine

if it is greater than or equal to the target utilization.

3) Collect Moving Average
The purpose of this state is to temporarily pause the

generation of new test cases to observe the resource

utilization under more stable conditions. This is because

after the test case has created new IoT devices they

may require some time to initialize and begin generating

traffic. This state is also important to eliminate random

spikes in resource utilizations in the IoT network due to

application background processes that are unrelated to

the IoT traffic.

The triggering of the end state in the state machine indicates

that a bottleneck in the IoT network has been detected. A

bottleneck in the context of the IoT network is any point in

the application infrastructure which has breached the estab-

lished QoS threshold. Since many applications operate on the

network we can have multiple bottlenecks in the network.

C. Prediction Engine

We now discuss another important part of the Smart Testing

Framework, the Prediction Engine, as shown in Fig. 3. The

Prediction engine is used for predicting the resource utilization

in a dynamic IoT network. The primary components of the

engine are: the data processor, the predictor and the test case

253

generator. Together they provide users with the ability to build

custom prediction algorithms and execute test cases to detect

bottlenecks.

Fig. 3. Prediction Engine

1) Data Processor
The input to the Data Processor is the historical resource

usage information that has been collected previously

from the IoT network. We can use this data to make

predictions about usage patterns that have not yet been

observed. The Data Processor ingests, validates, formats

the data and passes it to the Predictor.

2) Predictor
The role of the Predictor component is to apply a

prediction algorithm on the incoming data that has been

passed to it. For example, as shown in Fig. 3, we can

import a regression library and use it to generate a

predicted value (alternatively, a machine learning library

can also be used for this purpose). In our experiments

we used CPU utilization as the value we want to predict

based on the number of active IoT devices on the

network.

3) Test Case Generator
The role of the Test Case Generator is to pass the

action to the Smart Testing Framework. For example,

this action can be a request to create a given number of

IoT devices as specified by the Predictor.

III. IOT DEVICES

IoT devices come in a variety of types and existing legacy

devices are being retrofitted with Internet connectivity. In this

section we describe two common IoT device types and define

the data structures that they emit.

A. IoT Temperature and Light Sensor

Environment monitoring is a common use case for IoT

devices[5]. Therefore, to meet our research objectives of

providing a platform for emulating IoT networks, we decided

to implement an environmental IoT device. In our design

we used the Texas Instruments (TI) SensorTag as the model

for our virtualized IoT device that produces temperature and

luminosity data[6]. The TI SensorTag has several embedded

sensors that emit readings with various data types as shown

in Table I. The data types are all numerical which means that

from a size perspective, each set of emitted readings it is quite

small.

Sensor Name Unit Type Description
pressure hPa float Pressure sensor air pressure
pressure t C float Pressure sensor temperature
humidity %RH float Humidity sensor relative humidity
humidity t C float Humidity sensor temperature
objtemp C float IR temp sensor object temperature
light Lux float Light sensor illuminance
battery mV float Battery voltage level

TABLE I
SENSORTAG EMBEDDED SENSORS

• Features
The device works by simply emitting readings for each

sensor type at a given interval, for e.g. every 1 second.

Since we know the data types and emission rates, we

can reliably reproduce this data without the need for the

physical device by designing a software version of the

sensor.

• Message Format
To be able to process the data in a standardized way we

have defined a message format that is based on the JSON

standard. This allows us to validate the message integrity

as it gets passed between applications on the IoT network.

Fig.4 is a an example of a temperature reading. Since we

use a common message format, it also allows us to store

the information in the same database schema.

{
sensorID:"IoT_temperature_sensor_65_3001"
,sensorType:"room_temperature"
,value:"16"
,timestamp:"1533663203"
,daydate:"20180807"

}

Fig. 4. Temperature Sensor Message Format

B. IoT Camera

Another type of IoT device that poses challenges for net-

work designers are devices that generate large amount of

traffic. An example of such a device is a camera. Cameras are

an important tool in monitoring the environment and produce

video streams that can be analyzed in real time. To understand

the behavior of this type of IoT device, we created a prototype

camera using the Raspberry Pi Kit that came with a camera

module.

• Features
To create a virtualized representation of the IoT camera

we documented several necessary characteristics for a

fully working camera. The camera must produce video,

must have a connection to the Internet and must be

able to stream the video to a recipient. Towards this

goal we created an application that stores a video file,

implemented several libraries for image processing and

254

created a connector to a database to store the video data.

The application creates streams by looping through the

video file, breaking the video down into frames, encoding

the images into a string based format and then writes this

data to the database.

• Message Format
The messaging format shown in Fig. 5 was created to

transmit and store the data. We store each image in

the database with a frame id. This is a concatenation

of the camera id and timestamp. This allows us to

reconstruct the video frame by frame if necessary. The

advantage of storing the images by frame allows other

applications to perform image recognition tasks without

have to repeatedly break down the video into frames each

time the camera data is queried.

{
camera_id:"IoT_camera_68_3010"
,frame_id:"153467408132"
,value:"base64_encoded_value_here"
,timestamp:"1533663203"
,daydate:"20180807"

}

Fig. 5. IoT Camera Data Format

IV. IOT APPLICATION

In this section we discuss the key modules that were

created to support the major functionalities of the EMU-IoT

application used in this work.

A. IoT Device Service

The IoT Device service provides the primary functionality

for creating and destroying virtualized devices in EMU-IoT.

The service abstracts many layers of the device creation pro-

cess which eventually reaches the container service provider li-

braries. This function will carry out the actual tasks of creating

the containers. This allows us in the future to change container

service providers if necessary. In our example application we

created IoT Temperature and Light Sensor and IoT Camera.

B. IoT Load Balancer

The IoT Load Balancer provides several functions for or-

chestrating the management of IoT Nodes and the assignment

of IoT devices to these IoT Nodes. IoT Nodes are objects that

represent physical/virtual machines which are the computing

resources from the cloud service provider. The orchestration

functions of IoT Load Balancer ensure that whenever a request

to create a IoT device is made, the correct IoT Node is

provided based on the Load Balancing policy. This is an

important feature for EMU-IoT because we want to be able

to execute experiments that are geographically distributed. For

example, we can set a policy to force all newly created IoT

Devices to a particular IoT Node in a certain geographic

location. IoT Load Balancer is also responsible for maintaining

the overall health of the IoT network. IoT Load Balancer can

perform cleaning and reset functions in case an experiment did

not execute completely and remove lingering IoT devices on

the network. Lingering IoT Devices are emulated IoT devices

that are no longer needed.

C. IoT Monitor

The IoT Monitor provides all of the data gathering capabil-

ity from across the entire IoT Network. The gathered data can

be statistics of the resources in use on a particular node, such

as CPU, Memory, Disk and Network bandwidth utilization. We

can also gather information about the container services such

as the number of containers and whether they have terminated

or are still running. In our implementation we collect all of the

metrics mentioned above, but we only use the CPU utilization

as the primary data source to make predictions. A major

benefit of IoT Monitor is that the application was designed to

be multi-threaded, therefore we can monitor many nodes and

services independently and specific monitors can be disabled

if not needed.

D. IoT Experiment

The IoT Experiment module is the main access point

for the user to run coordinated experiments based on a set

of configuration parameters that can be provided at build

time. This module is configurable depending on the type of

experiments that can be run. For example, in our case we ran

experiments based on exhaustive search. This means that we

target a particular CPU utilization value to find a bottleneck.

In another case, we implemented a linear regression based

experiment that learned from the exhaustive search data and

then used the Smart Testing function to make predictions about

unknown bottlenecks in an IoT application.

V. EXPERIMENTS

In this section we describe the types of experiments, the

configuration details and how the data is collected. The

experiments are divided into two phases. In the first phase

as shown in Table II, we execute the exhaustive search up

to a chosen CPU utilization target (represented by Target U

in the table). This means that we obtain the CPU readings

for all cases until we reach the target. In our experiment we

have the Temperature and Light sensors which represents IoT

devices that generate very small amounts of data. We repeat

this experiment ten times for three utilization target levels.

Device Runs Type Application Target U
Temperature
and Light

10 Exhaustive Kafka 15.00%

TABLE II
EXPERIMENT PLAN: EXHAUSTIVE SEARCH

In phase two, we make predictions based on the data that

is gathered in the first phase of the experiments. As shown in

Table III, we chose prediction targets that are beyond the data

collected so that we can predict unknown values. For example,

for IoT temperature and light we collect data up to the 15%

utilization target point and then we try to predict how many

255

Device Runs Type Application Target U
Temperature
and Light

5 Regression Kafka 17.50%

Temperature
and Light

5 Regression Kafka 20.00%

Temperature
and Light

5 Regression Kafka 22.50%

TABLE III
EXPERIMENT PLAN: LINEAR REGRESSION SEARCH

IoT devices are required to increase the CPU utilization up

to 17.50%, 20.00%, and 22.50%. We repeat this process five

times for three utilization target levels.

At the platform level, the software stack that is used

across the network is Ubuntu 16.04 and the latest version

of Docker Community Edition 18.03.1-ce[7]. At

the application level we have Apache Kafka 1.0.0[8],

Spark 2.1.0[9], and Cassandra 3.1[10] which are all

deployed as containers on Docker. For the linear regression

prediction function we used the Python statsmodels
package[11].

VI. RESULTS

In this section we present the results of all the experiments

that were executed on EMU-IoT. These experiments were

intended to show that based on our research goals we could

first measure the performance of an IoT application from end

to end, and second, be able to perform bottleneck detection that

would trigger an adaptation for a given IoT application. We

discuss the experiment results for both the exhaustive search

and linear regression cases.

A. IoT Temperature and Light Device

Fig. 6. Bottleneck Point - IoT Temperature and Light

In the IoT Temperature and Light experiment our goal is to

find the bottleneck when running a lightweight type of IoT

device. Once the bottleneck is found this would in theory

trigger an adaptation in the IoT infrastructure (scale up, i.e. add

more computing resources) represented in Fig. 6. For this type

of IoT device the traffic is emitted and then sent to gateway

where it is then forwarded to Kafka which is our aggregation

point. From there the data is read by Spark and then stored in

Cassandra. Prior to running these experiments we examined all

three of these applications in the architecture and found that

the CPU utilization increases the most with Kafka compared

to the other applications. This is why we chose to examine

only Kafka when experimenting with this IoT device type as

shown in Fig. 6.

Exhaustive Search

Fig. 7. Exhaustive Search Results IoT Temperature and Light

After executing the experiment 10 times, the results of the

IoT Temperature and Light device type experiment show that

there is little variation in the number of IoT devices required

to hit the 15% CPU utilization target. This is shown in Fig.

7. The mean number of IoT devices over the 10 runs is 265

and the standard deviation is within approximately 2% of the

mean. This suggests that there is little variance in the data. The

most likely cause of the minor variation in the results is due

to cloud variability and other background processes running

inside the container.

Linear Regression
After executing the 10 runs from the exhaustive search we

can derive a regression function from the data in an effort

to predict values beyond the 15% CPU utilization target. We

plot the data from the exhaustive search experiments shown

in Fig. 8 and we can see that there is strong positive linear

relationship between the IoT Temperature and Light device

count and CPU utilization.

Using the regression function we execute three experiments

by setting the target CPU utilization to 17.5%, 20%, and

22.5% and predicting the number of IoT Temperature and

Light devices required to reach the chosen target utilization.

Each experiment was run 5 times and the mean values obtained

in the 5 runs are reported.

The prediction results obtained by linear regression are

presented in Table IV. We first used the regression function

to predict the number of IoT devices to reach the target

CPU utilization level. Then we ran a validation experiment to

256

Fig. 8. Regression IoT Temperature and Light

Predicted num-
ber of Devices

Target U Observed U Std Dev

306 17.50% 17.30% 0.1328
352 20.00% 19.85% 0.3996
397 22.50% 21.70% 0.3884

TABLE IV
PREDICTION SUMMARY FOR IOT LIGHT AND TEMPERATURE

observe the CPU utilization at the given values of predicted

IoT devices. The standard deviation across all 5 runs of the

experiments for each target utilization level is also reported.

As seen from Table IV, the target CPU utilization is very

close to the observed CPU utilization for all predicted values

of IoT devices. The standard deviation is also relatively low,

suggesting low a variation in the results.

VII. RELATED WORK

Past researchers have proposed methods to improve QoS

in IoT networks. Gotin et al. investigated different system

utilization performance metrics as a scaling signal and com-

pared them to messaging queues [12]. The authors found that

monitoring the number of messages generated by IoT devices

is a more precise predictor of resources needed. However, this

requires instrumenting the application layer which makes the

framework inflexible. For example, it will require modifying

the application code to collect this information. In contrast,

our Smart Testing Framework can work with any application

without instrumenting it. Furthermore, in contrast to [12],

our framework can test the system autonomously, i.e., it can

generate test cases and monitor changes in the resources.

Fehlmann et al. advocates for the need for real-time system

testing in IoT networks, i.e., testing the behavior of a newly

added IoT device in a live system [13]. The authors use a

combinatory logic approach to determine how a test case

should be generated.

Another approach to evaluating IoT networks has been to

use simulation tools to test different scenarios. Ezdiani et

al. proposed and implemented a testbed for IoT networks

based on the concept of Quality of Service as a service

(QoSaaS)[14]. Similar to our work they provide an envi-

ronment to model heterogenous IoT networks. However the

testbed is based on Contiki OS[15] and all simulations must

run in that environment. In our approach we use EMU-IoT

which uses Docker. This allows us to run our Smart Testing

Framework on a wide variety of systems and hardware that

support Docker.

VIII. CONCLUSION AND FUTURE WORK

Heterogeneous IoT networks are increasingly becoming

more complex due to the high variability in IoT traffic caused

by different IoT device types and time of use. A better

understanding of the IoT traffic patterns can lead to improved

QoS levels in IoT applications running on these networks. In

this work, we implemented a Smart Testing Framework to

detect bottlenecks and predict the resource utilization of a het-

erogeneous IoT network to maintain QoS in IoT applications.

Our Smart Testing Framework can be used to predict resource

usage as a trigger for infrastructure adaptation, i.e. adding or

removing IoT devices from the network, in order to maintain

desired QoS levels. Future work will include supporting new

IoT device types such as wearable devices that generate

movement data. This type of data can be emitted at high

volumes but small size. We will also look at implementing

machine learning algorithms that can continuously learn from

past data to improve prediction accuracy.

REFERENCES

[1] A. Javed, K. Heljanko, A. Buda, and K. Frmling, “Cefiot: A fault-tolerant
iot architecture for edge and cloud,” in IEEE WF-IoT, 2018.

[2] H. F. Atlam, A. Alenezi, A. Alharthi, R. J. Walters, and G. B. Wills,
“Integration of cloud computing with internet of things: Challenges and
open issues,” in 2017 IEEE International Conference on Internet of
Things, 2017.

[3] A. Botta, W. de Donato, V. Persico, and A. Pescap, “On the integration
of cloud computing and internet of things,” in 2014 International
Conference on Future Internet of Things and Cloud, 2014.

[4] G. White, A. Palade, C. Cabrera, and S. Clarke, “Quantitative evaluation
of qos prediction in iot,” in 2017 IEEE/IFIP DSN-W), 2017.

[5] B. Ramprasad, J. McArthur, M. Fokaefs, C. Barna, M. Damm, and
M. Litoiu, “Leveraging existing sensor networks as iot devices for smart
buildings,” in WF-IoT, 2018.

[6] T. Instruments. (2018) Simplelink sensortag. [Online]. Available:
http://www.ti.com/ww/en/wireless connectivity/sensortag/

[7] Docker. (2018) Docker. [Online]. Available: https://www.docker.com/
[8] A. S. Foundation. (2018) Kafka a distributed streaming platform.

[Online]. Available: http://kafka.apache.org/
[9] ——. (2018) Spark - lightning-fast unified analytics engine. [Online].

Available: https://spark.apache.org/
[10] ——. (2018) Cassandra. [Online]. Available: http://cassandra.apache.

org/
[11] J. T. Josef Perktold, Skipper Seabold. (2018) Statsmodels for python.

[Online]. Available: https://www.statsmodels.org/stable/index.html
[12] M. Gotin, F. Lösch, R. Heinrich, and R. Reussner, “Investigating per-

formance metrics for scaling microservices in cloudiot-environments,”
ser. ACM/SPEC ICPE 2018.

[13] T. Fehlmann and E. Kranich, “Autonomous real-time software systems
testing,” in Proceedings of the 27th International Workshop on Software
Measurement and 12th International Conference on Software Process
and Product Measurement. ACM, 2017.

[14] S. Ezdiani, I. S. Acharyya, S. Sivakumar, and A. Al-Anbuky, “An
architectural concept for sensor cloud qosaas testbed,” in Proceedings
of the 6th ACM Workshop on Real World Wireless Sensor Networks, ser.
RealWSN ’15. ACM, 2015.

[15] Contiki. (2018) Contiki: The open source os for the internet of things.
[Online]. Available: http://www.contiki-os.org/

257

