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Abstract—In this paper, we propose and implement a dis-
tributed autonomic manager to maintain service level agreements 
(SLA) for each application’ scenario. The proposed autonomic 
manager seeks to support SLAs by configuring bandwidth ratios 
for each application scenario using overlay network before 
provisioning more computing resources. The most important 
aspect of the proposed autonomic manager is scalability which 
allows us to deal with geographically distributed cloud-based 
applications and large volume of computation. This can be useful 
in look ahead optimization and when using complex models, 
such as machine learning. Through experiments on Amazon AWS 
cloud, we demonstrate the elasticity of the autonomic manager.

Index Terms—Distributed Planning, Autonomic Systems, 
Cloud Resource Management, Machine Learning, Self-Testing

I. I NTRODUCTION

Driven by the increasing popularity of information technol-
ogy in our society, the number of distributed heterogeneous 
software systems is rapidly growing. A distributed system is 
composed of multiple cooperating components that communi-
cate through message passing [1] over a network. Versatility, 
flexibility, scalability, and low-cost management are essential 
requirements of a distributed system to cope with its increasing 
complexity. Distributed systems need to manage their behavior 
by exhibiting self-adaptive properties [2] to achieve the desired 
run-time qualities. Self-adaptive software systems modify their 
behavior in response to changes in operating environments [3]. 
The mechanism for achieving run-time adaptation is embodied 
through feedback loops in the form of Monitor-Analyze-Plan- 
Execute (MAPE) architecture [4]. Feedback loops can be 
implemented in either a centralized or decentralized manner 
depending on the design features and requirements.

Nowadays, more and more applications are deployed on 
clouds that facilitate elastic resources to plan and execute 
management changes dynamically [5]. It has been shown that 
in cloud computing deployments, the performance goals of 
applications, such as maintaining service level agreements 
(SLA), can be achieved through many different run-time 
changes [6]. Most approaches only consider provisioning/de- 
provisioning computing resources, and few try to maintain 
SLAs using other parameters such as network bandwidth 
configuration to reduce the costs. In this paper, we use both 
resource provisioning and dynamic bandwidth configuration to

maintain the performance of managed applications. Previously 
proposed mechanisms using bandwidth reconfiguration use 
a central autonomic manager which measures and monitors 
system parameters and applies corrective actions accordingly. 
However, a centralized autonomic manager can become a 
bottleneck itself, especially when it needs to run complex 
planning mechanisms over a look ahead window.

In this paper, we address the following research question: 
RQ. How can we design and implement a scalable look 
ahead planning mechanism to maintain performance 
metrics of cloud applications?
We take advantages of the Actor Model [7] and machine 
learning models to design our distributed planning mechanism. 
The proposed solution evaluates a domain-specific set of 
adaptation options at run-time and examines possible 
consequences of each adaptation option in the future, aka 
a look ahead window. We use machine learning (ML) to 
model and predict both future workloads and application 
performance. At high level, our distributed autonomic 
manager implements the MAPE-K control loop composed of 
Monitor, Analyze, Plan and Execute functions supported by 
a Knowledge Base.

The remainder of this paper is organized as follows. We 
explore related works in section II. In Section III, we introduce 
the purposed method and architecture, including machine 
learning models, and adaptation algorithms. Section IV is 
devoted to explaining experiment setups and analyzing results. 
Finally, section VI concludes achievements and states future 
works.

II. Re l a t e d  W o r k

Various approaches have been proposed so far to deal 
with the automatic cloud resource management problem [8], 
[9]. The work is motivated by the need to maintain SLAs 
in response to continuously changing workloads. Some of 
the conventional approaches in auto-scaling mechanisms are 
threshold-based rules, reinforcement learning, queuing theory, 
control theory, and time-series analysis [10].

Besides approaches that only focus on provisioning new 
computing resources in response to changes in workloads, 
some studies pay more attention to cost-less options such as
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network bandwidth allocations. For instance, in [11], a hill-
climbing heuristic at run-time has been used to dynamically 
adapt bandwidth of application flows to postpone provisioning 
virtual machines for as long as possible. The overall perfor-
mance of the autonomic manager has been improved in [12] by 
using machine learning models. Authors in both [11] and [12] 
introduce a centralized autonomic manager similar to most 
other auto-scaling approaches. Considering previous works, 
we design a novel distributed autonomic manager taking both 
resource provisioning and bandwidth configuration options 
into account.

Actor Model [7] is a conceptual model to deal with concur-
rent computations in distributed systems. It minimizes tight- 
dependencies between system components by assigning sys-
tem tasks to actors that communicate with each other through 
message passing. More resources allocated to a well-designed 
scalable distributed autonomic manager leads to more reliable 
decisions based on precise foresight. Stated characteristics of 
the Actor Model makes it a good fit for the requirements of 
our distributed autonomic manager.

One of the key challenges in designing and implementation 
of adaptive systems is providing assurances that the princi-
pal goals of self-adaptive systems are maintained when the 
autonomic system changes its behavior [13]. Self-testing as a 
common approach to providing assurances for self-adaptive 
systems is the ability of a self-adaptive system to test its 
behavior during and after applying an adaptation [14]. Some 
previous works such as [15], [16], and [17] are dedicated to 
automatically running Self-Testing mechanisms on change re-
quests at run-time. Although many pieces of research targeted 
different Self-testing requirements, and various tools have been 
developed so far, our searches failed to find an appropriate 
toolset or approach for applying Self-testing in a distributed 
system. In our proposed approach, the distributed autonomic 
manager implements the replication with validation method 
for performance evaluation of available adaptation options at 
run-time.

Automated testing mechanisms necessitate Test Data and 
Test Oracle to validate test results. Workload and performance 
models can be adapted to generate Test Data and create proper 
Test Oracle at run-time. Machine learning models have been 
widely employed in modeling the performance of different 
systems. For instance, Bodik et al. [18] applied curve-fitting 
and local regression machine learning approaches to model 
the performance model of an Internet data center based on 
current workload and system configuration. L i et al. in [19], 
Maggio et al. in [20], and Gambi et al. in [21] proposed 
other applications of machine learning models in designing 
and implementation of elastic cloud environments. Previously 
proposed methods take advantage of centralized or distributed 
machine learning algorithms to support decisions made by a 
centralized autonomic manager. On the contrary, our proposed 
autonomic manager applies machine learning models to make 
decisions in a distributed manner.

III. M e t h o d  A n d  A r c h i t e c t u r e

We target web applications hosted in cloud serving different 
categories of incoming requests, also known as Scenarios. 
Each scenario has an upper bound response time defined by 
SLAs. The autonomic manager observes the application per-
formance and plans necessary modifications in the application 
resources or configuration parameters to maintain SLAs. To 
introduce the distributed planning mechanism, we start with its 
conceptual architecture. Afterward, we use an illustrative ex-
ample to demonstrate the original idea. Since we use predictive 
machine learning models, a subsection is devoted to explaining 
how designated ML models are structured. Later, we take a 
more in-depth look into the algorithms used for implementing 
the distributed planning mechanism. The complexity level of 
the proposed distributed algorithm demands formal verification 
to prove that the algorithm is deadlock-free, adaptations are 
mutually exclusive, and all planning routines eventually come 
up with a decision.

A. Method Overview

Figure 1 illustrates how the proposed distributed look ahead 
planning works. The autonomic system is composed of multi-
ple Autonomic Actors illustrated in Fig. 1 with blue color. Each 
autonomic actor monitors response times of a specific scenario 
and once its SLA is violated initiates the adaptation routine 
(red actors). Afterward, the autonomic actors w ill examine 
available adaptation options over a look ahead window by 
creating shadow copies of themselves also called as Test 
actors. Each adaptation option w ill be assigned to a separate 
test actor (orange actors). This Self-Testing method is called 
replication with validation. Essentially, each Test Actor tests 
benefits of a specific adaption option in response to the 
workload predicted at that point in time (on the horizontal 
axis, the orange circles are shown at discrete times). Machine 
learning models are employed to generate workloads (Test 
Data) and predict application response time (Test Oracle). 
An adaptation option or control points vector is a set of 
network bandwidth allocation per scenario and the number 
of computing resources assigned to the application. At the 
very end, an optimal adaptation option is found and applied 
(green actors). In other words, the autonomic manager creates 
multiple instances of the model for all adaptation options and 
solves those models.

The number of simulation steps is specified by the look 
ahead window. During the simulation run, each Test Actor 
gathers required audit parameters - such as the total number 
of SLA violations or adaptations - for evaluating adaptation 
options. When the simulation is over, the autonomic manager 
applies a scoring function to estimate the benefits of each 
adaptation option. Equation 1 displays generic composition 
of a scoring function with cj as effective weight of each 
audit parameter P j. For example, we can utilize the weight of 
each parameter to adjust the relative impact of SLA violations



15th International Conference on Network and Service Management (CNSM 2019)

Adaptive System Composed of n Actors

Fig. 1. Look Ahead Distributed Planning

and adaptations in the final decision made by the autonomic 
manager. n

S =  A vg(Y J Ci X Pi) (1)
i=1

The proposed distributed planning mechanism needs a lim-
ited set of predefined adaptation options. Without limiting 
the number of available adaptation options, the state space 
explosion problem threatens performance of the autonomic 
manager. In practical terms, the type of adaptations available 
(bandwidth, virtual machines or container scaling, threads 
or other parameters tuning, etc.) is limited by technological 
constraints and therefore the state explosion is not a concern. 
In addition, experts' knowledge of application, cloud, and 
network management will further limit the adaptation options.

B. Illustrative Example

In order to make the distributed planning more clear, 
consider an e-commerce web application with three different 
scenarios and their corresponding response time SLAs:

• Browse: Exploring different categories and products 
(SLA: 1000 ms)

• Basket: Shopping basket manipulation (SLA: 400 ms)
• Admin: Data entry and order management (SLA: 2000 

ms)
SLA definitions come from business needs based on the 
priority of each scenario. In this case, three Autonomic Actors 
continuously monitor the workload and response time of 
specified scenarios. Suppose that the response time of Basket 
scenario violates 400 ms SLA while other indicators for 
Browse and Admin scenarios are below 500 ms and 1000 
ms respectively. As a result, the second Autonomic Actor 
(initiator) triggers distributed planning routine and creates 
Test Actors for available adaptation options as shown in 
Figure 2(a). In this case, available adaptation options are: (1) 
decreasing the relative bandwidth allocation of Browse; or (2) 
of Admin scenarios to delay processing those requests and 
free resources for the Basket scenario; and (3) provisioning 
new server nodes.

Fig. 2. Distributed Planning

The next step is shown in Figure 2(b), where the initiator 
invites other Autonomic Actors to participate in the distributed 
planning routine. Other Autonomic Actors, similar to the 
initiator actor, create Test Actors for simulating all available 
adaptation options. Afterward, Test Actors handling the same 
adaptation option shape networks, similar to what is presented 
in Figure 2(c) with different colors. Test Actors utilize two 
different machine learning models to predict future workloads 
(Test Data) and foretell response times (Test Oracle).

When the simulation is done, Test Actors use a predefined 
scoring function (cf. equation (1)) to evaluate each adaptation 
option. As presented in Figure 2(d), each Test Actor terminates 
itself after sending the calculated score to the initiator Test 
Actor in the same network. Figure 2(e) illustrates how the 
initiator Test Actors send aggregated scores to their parents 
before terminating themselves. The final step is shown in 
Figure 2(f) when the initiator Autonomic Actor picks the best 
adaptation option and notifies other actors about the decision 
made.

C. Machine Learning Models

While networks of Test Actors are testing the performance 
of different adaptation options, each Test Actor utilizes two 
machine learning models to perform as Test Data generator 
and Test Oracle. Although those machine learning models have 
to be trained offline initially, Autonomic Actors can continu-
ously improve them serving them new data collected from 
the environment. Each Autonomic Actor shares its prepared 
machine learning models with newly created Test Actors.

1) Workload Model: The Workload Model supports each 
Test Actor in predicting the future workload of its assigned 
scenario as Test Data. As shown in Equation 2, the workload 
model (W) receives discrete time as input and outputs likely 
requests traffic for a specific scenario.

W  (time) =  W t  (2)

2) Performance Model: Test Actors employ the Perfor
mance Model to estimate performance of the monitored system 
in response to varying workloads. According to Equation 3, the 
Performance Model (P) is a function of control point values 
(CPI), such as the overlay network bandwidth allocation 
and amount of provisioned resources, current performance
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indicators (P IV c) such as average response time, and current 
workload (WL). Outputs of the Performance Model can be 
used as Test Oracle to evaluate effectiveness of a specific 
adaptation option on maintaining system SLAs.

P  (c p V,  W l,p r i/C ) =  (3)

Having future workload estimated by Equations 2, the au-
tonomic manager can apply search algorithms over the model 
described by Equation 3 and determine the proper control point 
values and calculate the resulting response time.

Both Workload Model and Performance Model are supposed 
to predict numeric data, which makes regression algorithms 
good candidates for the implementation. Since workload char-
acteristics and deployment topology may change periodically, 
machine learning models need to employ classification algo-
rithms to choose different regression formulas under different 
situations. In addition, both models support online learning to 
let the autonomic manager improve predictions precision by 
feeding monitored metrics at runtime.

D. Distributed Planning Algorithm

When an Autonomic Actor (initiator) detects the need for 
adaptation, it executes the sequence of actions presented 
in Algorithm 1. Test Actors follow the instructions given 
in Algorithm 2. Lines 1 to 7 of Algorithm 1 initiate the 
adaptation process, create Test Actors and invite other Adaptive 
Actors to participate. When an Adaptive Actor receives such 
a message, creates required Test Actors using the message 
server implemented in lines 8 to 12 of Algorithm 1. Test 
Actors utilize the Workload Model to generate Test Data, 
validate results using the Performance Model, calculate score 
of the assigned adaptation option, and finally send calculated 
score to the leader Test Actor in lines 1 to 8 of Algorithm 
2. Lines 9 to 17 of Algorithm 2 illustrate how the leader 
Test Actor calculates and sends aggregated score to the parent 
Adaptive Actor. Finally, the initiator Adaptive Actor finds the 
best adaptation option based on the calculated scores and asks 
other Adaptive Actors to apply the selected adaption option as 
shown in lines 13 to 29 of Algorithm 1.

IV. Ex p e r i m e n t a l  Va l i d a t i o n

In this section, we examine the feasibility and effectiveness 
of the proposed approach through experiments on AWS EC2. 
We chose an E-Commerce application with about 1 million 
daily page views [22]. Our experiment examines the feasibility 
of the proposed distributed autonomic manager (RQ).

A brief analysis of the load balancer log files clarifies that 
more than 93% of incoming requests belong to one of the four 
major scenarios listed in Table I.

The application infrastructure is composed of various nodes 
hosted on AWS as shown in Figure 31. A virtual switch 
manages the overlay network connecting all server nodes. The 
Proxy Server routes incoming requests to the Load Balancer

1 Experiments setup guides with references to the source codes and Amazon 
AM I images are available at:
https://github.com/FarzinZaker/LADP-Experiments-Setup

Algorithm 1 Planning In Autonomic Actors
1: actorsCount — neighbors .length + 1 
2: for all option E adaptationOptions do 
3: testActor —

new TestActor (models, option, testActor, actorsCount) 
4: for all actor E neighbors do
5: send < option, testActor > to actor
6: end for
7: end for

8: initiator — null;
9: on message < option,testLeader > do 
10: testActor —

new TestActor(models, option, testLeader, actorsCount) 
11: initiator — sender
12: end message

13: scores — Map < Option,Score >
14: on message < option, score > do 
15: scores[option] — score
16: if scores.length = adaptationOptions.length then
17: bestScore — to
18: bestOption — null
19: for all option E adaptationOptions do
20: if ( thenscores[option] >bestScore)
21: bestScore — scores[option]
22: bestOption — option
23: end if
24: end for
25: for all actor E (neighbors + self) do
26: send bestOption to actor
27: end for
28: end if
29: end message

Algorithm 2 Planning In Test Actors
1: for i — 0 to simulatedIterations do 
2: Simulate system execution using models
3: end for
4: score — scoringFunction()
5: send score to leader 
6: if self <>leader then 
7: terminate
8: end if

9: scores — List < Score >
10: on message score do 
11: scores .add(score)
12: if scores.length = actorsCount then
13: averageScore — average(scores)
14: send < option, averageScore > to parent
15: terminate
16: end if
17: end message

via an overlay network. In Addition, the Proxy Server runs 
the autonomic manager to adjust bandwidth allocations and 
control number of web servers in the Application Tier. We 
employ Akka framework [23] to implement the Proxy Server 
on top of the Actor Model. Nginx plays the load balancer role 
and is configured to dispatch requests between available web 
servers on a round robin basis. A ll web servers connect to the 
same database server. MySQL server stores the whole website 
data, whereas MongoDB is partially in sync with MySQL 
server data and provides fast responses to product filtering 
queries. Technical specification of each node is provided in 
Table II.

We implement required machine learning models using the 
IBK2 algorithm available in Weka Library [24]. IBK2 is a non-
parametric online learning method for classification and re-
gression designed based on the k-nearest neighbors algorithm
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Scenario Processing Type Response Time SLA
Browse Large database queries 1.2 secs
Product Single database record fetch 0.8 secs
Basket Database updates 0.5 secs
Static Read and render files 1.0 secs

TABLE I
Ch a r a c t e r i s t i c s  o f  e a c h  s c e n a r io

Node Hardware Software Count
Proxy Server t2.medium Tomcat + Akka >  1

Load Balancer t2.medium Nginx 1
Web Server(s) m4.large Tomcat >  1

Database m4.large MySQL + MongoDB 1
Virtual Switch t2.medium Open vSwitch 1

TABLE II
E-Co m m e r c e  w e b s i t e  d e p l o y m e n t  n o d e s

Fig. 3. Deployment View of The E-Commerce Website

(k-NN) and fits the requirements explained in section III-C. 
Both Workload and Response Time models have been trained 
using access logs of three randomly chosen dates. During the 
training phase, a total number of 2,871,544 requests were 
served, and their arrival rates and response times were fed 
into the prediction models. Our initial experiments show that 
the IBK2 algorithm predicts arrival rate and response time with 
approximately 96% precision.

During the following experiments, Autonomic Actors initiate 
the distributed planning routine in case of two subsequent 
SLA violations. The distributed planning mechanism inves-
tigates the possibility of maintaining SLAs by modifying the 
bandwidth rate of each scenario. The assumption is that the 
application has a total bandwidth that can be dynamically re-
allocated among scenarios in fractions of: [2.5, 0.5, 0.75, 1.0] 
before provisioning new resources. The scoring function des-
ignated for evaluating the performance of adaptation options 
is specified in equation 4. Nv is the number of SLA violations 
and Na is the number of required adaptations during the look 
ahead window. cv and ca are constant weighting factors. The 
autonomic manager chooses the adaptation option with the 
lowest S .

S =  Avg(cv X Nv +  Ca X Na),Cv =  10, Ca =  1 (4)

According to the log files, the understudy website is expe-
riencing most of its traffic between 8:00 am and 8:00 pm in 
the local timezone. We use available access logs for the same 
period on random dates in the experiments.

A. Qualitative Analysis

During this experiment run, the total number of 543,105 
requests were fed into the system. The autonomic manager 
is configured to simulate the next 100 iterations (look ahead 
window) of serving incoming requests. Figure 4 illustrates 
the distribution of incoming requests. Horizontal axis labels 
in figure 4 show the number of iterations passed from the

beginning of the experiment. Red dots show the points of 
time that the autonomic manager starts to determine the best 
adaptation option.

Fig. 4. Distribution of incoming requests in testing phase

In order to interpret experiment results, we present aver-
age response times, response time SLAs, and configuration 
changes in Figure 5. Configuration changes may combine any 
modification in bandwidth limits of each scenario (dashed 
lines) and any change in the number of web servers of the 
Application Tier (solid line). Figure 6 shows average CPU 
utilization of web servers during each iteration. Adaptation 
points are highlighted in both Figure 5 and Figure 6.

As shown in Figure 5 and Figure 6, total number of 7 
adaption actions take place during 720 iterations. The first 
adaptation occurs at 12th iteration when two subsequent SLA 
violations occur in serving the Browse scenario. The band-
width allocations changes to increase the relative bandwidth of 
the Browse scenario compared to other scenarios. As a result, 
the average response time of the Browse scenario drops at 
14th iteration. At 55th iteration, another adaptation starts in 
response to another couple of SLA violations in the Browse 
scenario. In order to maintain SLAs, the autonomic manager 
decides to add a web server to the Application tier beside 
modifying the bandwidth configuration, which decreases the 
average CPU utilization of web servers in next iterations. 
Although the autonomic manager detects two subsequent SLA 
violations at 79th iteration in the Static scenario, decides to 
keep the system configuration unchanged. The next adaptation 
action takes place at 138th iteration in response to another 
couple of SLA violations in the Static scenario. This time, 
re-configuring bandwidth allocation does not help. Instead, 
adding a new server to the Application tier causes a drop 
in average CPU utilization of web servers. The autonomic 
manager finds out that even by shutting down one of the 
servers at 378th, it is possible to maintain SLAs. Since SLA of
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Fig. 5. Configuration Changes and Effects on Response Times

Fig. 6. CPU Utilization of Web Servers

the Static scenario is violated two times before 502th iteration, 
another adaptation unfolds changes the system configuration. 
Finally, the last adaptation occurs at 643th iteration, without 
any SLA violation to shut down another not needed web 
server.

This experiment confirms the feasibility and applicability of 
the proposed distributed autonomic manager (RQ). It applied 
seven adaptations in total to maintain SLAs in response 
to changes in workloads while serving 543,105 incoming 
requests.

B. Scalability

Since the autonomic manager is hosted on proxy servers, 
we monitor the number and utilization of proxy servers during 
the first experiment. When the autonomic manager starts the 
distributed planning phase, it may scale up automatically the 
number of proxy server nodes by adding new slave nodes 
according to the current workload and the look ahead window 
size. When there is no need for a slave node in the next

Fig. 7. CPU Utilization of Proxy Servers

adaptation planning, the autonomic manager automatically 
scales down the proxy server nodes.

As recorded in Figure 7, the autonomic manager scales up 
itself by adding a new slave node at iterations 138 and 378. 
During other adaptations, it determines that there is no need for 
additional resources. Since the incoming traffic can rise to any 
number of concurrent users, auto-scaling capability enables the 
proxy server to deal with the even massive incoming traffic
(RQ).

V. Th r e a t s  t o  Va l i d i t y

We provide the autonomic manager with a predefined set of 
adaptation options. Moreover, the autonomic manager needs a 
well-defined scoring function to rank available options at run-
time. However, applying a different scoring function or set of 
adaptation options may cause different outputs.

Although Text Actors are lightweight pieces of code, run-
ning multiple instances of Test Actors needs computing re-
sources that may not be available in all distributed systems. in 
such cases, we need additional servers to run simulations and 
send planning decisions back to Autonomic Actors. This will 
impose negative effects on the performance and effectiveness 
of the algorithms.

VI. Co n c l u s i o n  A n d  Fu t u r e  W o r k

in this paper, we proposed a look ahead distributed mech-
anism for autonomic cloud resource planning. Scalability is 
the essential characteristic of the proposed approach, which 
empowers the autonomic manager to deal with a large volume 
of computations. The proposed approach is designed based on 
the discrete Actor Model in order to minimize the coupling 
level of implemented components. Available adaptation op-
tions are being evaluated through replication with validation 
Self-Testing. Machine learning models are responsible to gen-
erate Test Data and the Test Oracle to validate test results. 
We examined the feasibility, and scalability of the proposed 
planning mechanism.

Although the proposed approach in this paper is on resource 
planning for cloud applications, we believe that it is feasible to 
apply a similar approach to a broader range of problems. For 
instance, we are going to use lessons learned in this research 
for an end to end delay management in another solution using 
the Fog-based IoT architecture.
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