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Abstract—The volatility of web software systems, for example
due to traffic fluctuations, can be addressed through cloud
resource elasticity. Cloud providers offer specific services to
automate the process of elasticity, so that application developers
can efficiently and effectively manage their cloud resources. Cur-
rent autoscaling methods mostly employ rule-based or threshold-
based techniques. In this work, we discuss a more sophisticated
and robust method based on control theory. We present the
design for a simple controller and how it can be applied on
real cloud environments. We demonstrate the applicability of our
controller by deploying it on two cloud environments, one public
and one private. Our experiments show that the same controller
functions accordingly and maintain the set performance goal
in both environments, indicating the potential portability of the
controller across clouds.

I. INTRODUCTION

Software systems on the web can be significantly volatile

both when it comes to expected changes (e.g. traffic fluc-

tuations during a given period) or unanticipated ones (e.g.

hardware or network failures or malicious activity). Thanks to

cloud technologies, web application developers are offered the

capabilities to manage the virtual infrastructure supporting the

software, and reserve and decommission resources at will and

on demand through elasticity. Cloud Elasticity, as a general

concept, refers to the capability of the cloud to provide IT

resources and software on demand. Elasticity is implemented

using the concept of the autonomic computing MAPE loop, as

introduced by IBM [1] consisting of the phases of Monitoring,

Analysis, Planning and Execution phases.

Industrial, public, and private cloud providers have in-

creased their efforts and provisions in systematizing and,

at certain levels, automating the process of scaling. Current

deployed efforts mostly focus on monitoring and execution. In

the analysis phase, they employ mainly rule-based, threshold-

based or, at most, simple statistical analyses to identify prob-

lematic cases in the deployed system’s state. These methods

are simple enough, quite straightforward, and, although they

may not always be optimal [2], they have proved to be

functional. These analyses usually result in simple scaling

plans, which add or remove VMs in a topology, most often in

static steps defined at design time, e.g. one or two at a time.

At the same time, research is pushing towards more sophis-

ticated analyses and a more complex and multi-dimensional

planning phase. On one hand, it is becoming evident that not

all “bad” situations can be rectified with a single-dimensional

strategy. Therefore, autonomic management systems need to

properly identify problems, decide and plan for the best

adaptive action for each problem. On the other hand, the

ability to accurately identify unhealthy situations given large

and frequent perturbations is becoming imperative. For this

reason, researchers are looking towards more robust and

formal methods, including among others discrete optimization

algorithms all the way to control theoretic approaches.

Despite their mathematical foundation and their technical

robustness, these methods may be too complex for engineers

and go beyond their requirements or their capacity. However,

there can exist middle-ground solutions with less design com-

plexity, and without compromising exceedingly in robustness.

For example, less attention has been paid to techniques of

medium complexity, which are fairly robust, but require less

expertise to be designed than more complicated techniques

like optimization. In this paper, we discuss such a technique,

known as Proportional-Integral-Derivative (PID) controllers,

and present how it can be applied within an actual cloud en-

vironment. These controllers are based on objective functions,

which calculate the divergence (error) of performance metrics

from a given goal (e.g. to avoid CPU saturation in a VM,

or maintain low response time) and issue adaptive actions to

minimize the error. Although not an entirely novel method in

the research community [30], controllers have not yet gained

momentum in industrial applications. The goal of our work

is to demonstrate the applicability of controllers and guide

practitioners to use them in real environments.

Another dimension when considering the elasticity strategy

of a deployment is the cloud environment itself. Although

a relatively new technology, cloud computing offers a great

variety of architectures and configurations in which one can

deploy their web applications; from public to private solutions,

from industrial to open-source solutions and so on. Apart from

architectural differences and offered services, clouds may dif-

fer in terms of their capacity. Variability can greatly influence

the system’s performance and the effectiveness of certain rule-

based policies. This fact indicates that rules, thresholds and

the associated policies may not be portable, which hinders the

task of elasticity and increases the workload of application
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engineers. In addition to PID, in this work, we also explore

the differences between an industrial public cloud, Amazon

EC2 [3], and a community-driven research cloud environment,

SAVI [4], [5], a custom OpenStack implementation. We also

deployed PID controllers in both clouds and examine the

existence of any differences and investigate the reasons behind

these differences, if any. In the context of our experimenta-

tions, we viewed Amazon EC2 as a paid public cloud, and

SAVI as a private cloud, given our higher degree of control

over the latter.

In summary, this paper makes three distinct contributions:

1) PID controller in real cloud: The simplicity in de-

signing the PID controller along with its robustness

and formality as a mathematical apparatus makes it an

attractive solution to address the problem of autonomic

elasticity. We demonstrate how PID can be developed

and used in real cloud environments. Its applicability

and efficiency is evident in our experiments.

2) PID in multiple clouds: We have applied the developed

PID controller in two real-world clouds and studied its

applicability and efficiency under the difference that one

is a public cloud, while the other is private.

3) PID portability: Our experiments indicate that a PID

controller designed for a particular web application can

be deployed on any cloud environment. In our exper-

iments, we deployed our test application with its PID

controller in both Amazon and SAVI clouds and the

controller worked as expected in both environments. The

expectation was that the controller will keep the behavior

of the system close to the goal, thus guaranteeing a

standard level of performance. Although our experi-

ments may not be extensive enough to be perceived as

concrete proof, our results are a first indication of PID’s

portability.

The rest of the paper is organized as follows. Section II

provides an overview of the related work. Section III describes

the design process and the properties of the PID controller.

In Section IV, we discuss the two cloud environments we

use in our experiments, Amazon EC2 and SAVI, and their

differences. Section V presents our experiments with PID in

the two clouds. Finally, Section VI concludes this work.

II. RELATED WORK

Adaptive systems have been proposed to automatically man-

age web applications and react to change. An adaptive system

is a system capable to function properly, within parameters

defined by the Service Level Objective (SLO), without human

intervention [6]. The system is capable to extract data from the

environment where the web application resides (using a series

of sensors), analyze it (identify problems that might prevent

the application to function optimally or within parameters),

create an adaptation plan (if necessary) and implement it. The

web application and the resources it uses become the managed
resources, while the rest of the system are part of the appli-
cation manager. Architecturally, anutonomic systems follow

the Monitor-Analyze-Plan-Execute (MAPE-k) loop sugested

by IBM [6].

The multi-tenant nature of the cloud, that allows multiple

independent applications to share the same hardware, makes

cloud-deployed applications more challenging to manage [7].

The simplest type of adaptation strategy that can be designed

is one using policies, which are essentially event-condition-

action (ECA) rules: when event happens, if condition is true,
then execute action. These rule-based systems have been

investigated to some extent [8], [9], [10].

At the heart of an autonomic system is the decision-making

process on when adaptation is required, in other words, how

to identify the location of the problem and how to optimally

determine the type and quantity of resources that need to be

added or removed. To analyze the data and create an action

plan, some authors turned to models. Zahorjan et al. [11],

Eager and Sevcik [12], Lazowska et al. [13], and Reiser and

Lavenberg [14] have presented methods to analyze a system

from a performance point of view. Balbo and Serazzi [15], and

Litoiu et al. [16] have additionally considered how the poten-

tial structure of the workload may influence the performance of

the deployed system, how bottlenecks shift when the workload

mix changes and when the resources become saturated. A

method to uncover the worst workload mix and the minimum

population required to saturate a system is presented by Barna

et al. [17].

Any hardware-software system can be modelled by two

layers of queuing networks [18], [19]; one that describes

the software resources and the other one for the hardware

resources. The queueing theory has been successfully applied

to provide elasticity to cloud web applications, even when they

are under Denial of Service attacks [20], [21], [22].

Current state-of-the-art cloud environments implement and

promote elasticity by offering software services for the auto-

matic scaling of a cloud topology. More specifically, Ama-

zon [23] offers autoscaling capabilities in conjunction with

EC2 and CloudWatch, its monitoring service. The developer

can set up CloudWatch alarms to go off when particular

metrics go beyond specified thresholds (above or below the

threshold) and corresponding adaptive actions are triggered to

add or remove servers. Alternatively, if the workload pattern

is known, the developer can set up scaling schedules to adapt

the topology even without CloudWatch. OpenStack [24] offers

a similar service as a result of the collaboration between its

monitoring service, Ceilometer, and its orchestration service,

Heat. In both cases, the scaling policies are threshold-based

and result in over-simplified adaptive actions (i.e. add/remove

servers). Additionally, the services can react only to threshold

violations for metrics that the respective monitoring services

can measure. Given that the aforementioned monitoring ser-

vices were primarily designed for billing purposes, they fall

short in capturing important metrics, such as response time,

service throughput or application level metrics.

Beyond threshold-based and rule-based techniques, there are

various proposed techniques ranging from discrete optimiza-

tion algorithms to control theoretic approaches. For example,
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Li et al. [25] propose optimization deployments using bin

packing algorithms augmented with integer programming to

minimize application response time and infrastructure cost.

Other approaches use control theory specific approaches such

as model predictive control optimization [26] or other control

methods [27], [28], [29], [2]. Depending on the problem and

the cost function to be achieved, but also taking into account

other criteria, such as maintainability, evolution, cost of de-

velopment, elasticity designers and implementers can choose

an industrial rule based approach or control and optimization

based techniques [2].

Proportional-Integral-Derivative (PID) controllers were first

introduced as autonomic management components for web ap-

plications by Gergin et al. [30], under the assumption that the

application was multi-tier and that each tier was implemented

in a cluster (i.e. multiple virtual machines performing the same

task). Also, it was assumed that the service’s demands for

resources (e.g. CPU, memory etc.) of each tier was known

and constant. In this paper, we deal with more realistic

assumptions: not all tiers are clustered and we only have access

to the response time of the application and to CPU utilization

of the clustered tier, which we can monitor. In practice, we

do not assume a model of the application or a model of the

cloud as it happens with complex optimization algorithms.

Concerning the deployment models for clouds, the National

Institute of Standards and Technology (NIST) [31] differenti-

ates between them based on usage and boundaries. According

to NIST, the private cloud is “provisioned for exclusive use
by a single organization comprising multiple consumers”,

while the public cloud is “provisioned for open use by the
general public”. Dillon et al. [32] cite the motivation behind

using a private cloud including taking advantage of in-house

resources, higher security, and lower data transfer cost from the

organization to the public cloud. Armbrust et al. [33] expand

the motivation for a private cloud if workload stays constantly

high and sufficient utilization of resources is maintained,

while when demand fluctuates it is more cost-efficient to use

the public cloud with a pay-per-use pricing model. Finally,

Sotomayor et al. [34] comment on the additional challenges

in the private cloud of having to offer proper and uniform

management services for the virtual infrastructure besides also

maintaining and managing the physical infrastructure.

III. PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROLLER

(PID)

The Proportional-Integral-Derivative (PID) is the most used

controller in industry, reaching 90% of all instalments in some

industries [35]. The power of PID comes from its simplicity

but also from its effectiveness. Conceptually, the error, e(t)
(cf. Fig 1) is the difference between the observed (y) value of

the metric and the set goal (ygoal) for it. The error is processed

by the PID controller and fed back to the controlled system as

input u. The input in the process (software system) will then

consist of three components: a proportional, an integral and a

derivative of the error. The individual components to calculate

the input u at time t are aggregated in one term as follows:

u(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
(1)

Fig. 1. A PID feedback control loop

The first term, proportional control (P), adjusts the com-

mand u in direct proportion to the input (the error). The

adjustable parameter, Kp is the proportional gain coefficient. It

signifies the importance of the current errors and the resulting

output is positively and highly correlated with the error (e.g.

if the error is large and positive, the output will also be

large and positive). The second term, the integral control,
takes into account the error history and integrates it. That is,

it cumulates the error based on historical observations. The

adjustable parameter, Ki, is called the integral gain coefficient.
It signifies the ability of the controller to reduce the cumulative

effect of the error. For example, if the error accumulates

over time, this parameter will dictate the controller to apply

even stronger outputs. The third term, the derivative control,
anticipates where the process is heading by looking at the rate

of error. The derivative gain coefficient, Kd, is tunable. This

parameter contributes to proactive output from the controller

in an effort to correct anticipated errors.

The PID coefficients, Kp, Ki and Kd values can be

manually or automatically tuned [35] in such a way that the

quality of control indices (overshoot, steady error, rising time)

meet some predefined trajectory. It is largely expected that

the controller design will either have the expertise or the

deep knowledge of application domain to experimentally and

manually find and refine the coefficients. Alternatively, the

designer could have possession of models that describe the

application, from which the coefficients could be automatically

or systematically extracted.

The main advantage of PID controllers is that they can

be implemented without detailed and extensive knowledge of

the controlled system. Compared with optimization control

schemes, PID does not require a model of the application or

cloud. The only design issue is the tuning of the parameters

Ki, Kd, Kp and this can be done experimentally, manually

or automatically. PID controllers have also been proved ro-

bust enough to make them applicable to a large number of

application domains.

Regarding PID and clouds, in a related work of ours [30],

we introduced a PID controller to control the response time
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of an application deployed in cloud. It is based on the fact

that response time of an application depends on the degree of

CPU utilization (and consequently saturation) of its servers;

the more saturated the servers become the higher the response

time. While the saturation of other resources (memory, disk

etc.) may also affect the response time, we narrow our scope

to computationally intensive application that will most likely

saturate CPU utilization over other resources. This is done

without loss of generality, as the PID is defined independently

from the resource, which it controls. Formally, in the context

of CPU heavy applications, the mean response time Ri of a

server and of a cluster is given by [36]:

Ri =
Di

1− Ui
(2)

where Ui is the mean overall utilization of the cluster and Di

is the mean demand of the application for CPU.

From the equation above, one can compute the objective

utilization Ugoal
i of tier i that will keep the response time at

the desired level Rgoal
i :

Ugoal
i =

Rgoal
i −Di

Rgoal
i

(3)

In an ideal situation, by implementing a PID controller

for each tier of the application, and assuming no interference

between controllers, we can keep the response time constant

by keeping Ugoal
i constant. In reality, Di changes over time

and the response time is influenced by other factors besides the

mean utilization. In addition, not all the tiers are clustered and

their utilization can be controlled dynamically. For example,

most web applications are still deployed with a large database

running on a single powerful machine and the application logic

tier is deployed on a cluster that can be scaled up and down.

In the context of this particular paper, we investigate and

evaluate PID controllers under the following conditions:

1) We can auto-scale only one tier of the application.

2) The goal of the controller is to maintain utilization of

the tier, which can be monitored, to certain levels. By

extension (Eq. 2), we also control response time of this

tier.

3) The output of the PID controller is the number of servers

in the controlled cluster.

The purpose is to evaluate the PID’s ability to scale a cluster

(i.e. a tier). In this sense, we want to see how the PID performs

on a single cluster, without the potential interference from

other controlled clusters (through PID or other controllers) or

without any performance bottlenecks from the other tiers (for

example, saturation of the data cluster may cause saturation to

the web cluster due to waiting time). Other factors that may

affect even the performance of a single PID on a single cluster

may also include:

1) large and fast variations of the workload might not be

easy to track by the controller;

2) the influence of other tiers on the overall throughput and

therefore on the the controlled utilization might render

the control unstable;

3) the variations of the response time will be too high

because we control the response time at one tier ( cf

Eq. 2) and even there the control is not perfect.

Factor 2 may be minimized by assigning large enough VMs

to those tiers to ensure that they will have enough capacity

without additional delay. In addition, we assume that the

workloads are limited in intensity and they do not cause the

saturation of the uncontrolled tiers. Eventually, the goal is to

create evidence that the PID controller can replace the auto-

scaling rules [2].

IV. AMAZON EC2 AND SAVI CLOUDS

In this work, we focus our study and experiments on Ama-

zon EC2 and SAVI clouds. Amazon EC2 is an industrial public

cloud built for elasticity. It offers a variety of high capacity re-

sources, including computation, network and storage resources

and there is high availability guaranteed. Its services allow for

efficient management of resources by offering comprehensive

APIs to change the topologies, both horizontally (add or

remove resources) and vertically (changing size or type of

resources).

SAVI is a research cloud environment built on top of

OpenStack. The novelty of SAVI, especially compared to

Amazon EC2, is its tiered architecture; SAVI has a core node

acting as a high capacity datacenter and lighter edge nodes

distributed geographically acting as local computation nodes

or as a fault-tolerance mechanism. The nodes communicate

with each other through a high bandwidth private network,

making intra-communication fast and more secure. In another

additional novelty, SAVI is using a single orchestration service,

called Heat, in order to deploy and manage resources of a

single topology not only within one node, but across multiple

nodes as well.

In our experiments, we study these two cloud environments

based on them being public or private. We examine the

implication of this property on the PID controller’s design and

functionality.

A. Public vs Private Cloud

In the context of our work, we consider Amazon EC2 as a

public cloud, as it is intended, and SAVI as a private cloud.

As a public cloud, Amazon EC2 offers and guarantees high

availability of its resources1. Given that high availability is part

of an agreement, usually contractual, the public cloud provider

must guarantee the promised levels of quality of service. On

the other hand, the lack of such an explicit guarantee reduces

the probability for high availability in a private cloud, although

it would be irresponsible and damaging to have low resource

availability. SAVI is also a research platform, which may pose

additional challenges towards availability, either because of

hardware or network failures, or because of low capacity and

1https://aws.amazon.com/ec2/sla/
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high resource demands. Nevertheless, such challenges may be

present even for industrial private clouds, either because of

limited resources or lack of expertise or dedication in cloud

computing. Eventually, availability is the direct consequence

of cloud capacity in terms of hardware resources. In this sense,

public clouds can offer high availability due to high cloud

capacity as they expect a potentially large number of end-

users.

The most significant difference between public and private

cloud is cost. In public clouds, the cost is straightforward

as virtual machines are charged per hour of operation2. In

private clouds, the cost for resources is usually considered as

capital cost, charged once when they are purchased and then

they are amortized in time. Variable costs that depend on the

allocation and execution of virtual machines include mostly

power expenses. In terms of variable costs, a private solution

may be more cost-efficient than outsourcing to a public cloud.

However, unprecedented costs, including hardware failures,

may increase the total costs of running a private cloud making

the decision to invest in private or public infrastructure an

optimization problem under uncertainty.

The biggest advantage of private clouds against public ones

is the level of control over the infrastructure. The cloud

engineer can make changes to both hardware and software

at will to fit individual needs. In SAVI cloud, we had this

advantage, where we could require more hardware resources,

release virtual resources in mass and modify OpenStack ser-

vices. In addition, we have access to experimental services

and concepts, products of research. The additional control also

enabled us to more effectively addressed problems; access to

specific logs gave us deeper insight to debug issues which are

normally not visible in detail to end-users.

V. EXPERIMENTS

To evaluate the applicability of the PID controller in main-

taining a desired behaviour for a web application, and also to

study the implications of different cloud environments to the

controller’s functionality, we conducted two experiments; one

on Amazon EC2, as a public cloud, and one on SAVI, as a

private cloud.

The controller was supposed to regulate the behavior of a

three-tier web application on the topology shown in Figure 2.

The goal of the controller was to maintain an average of 55%

CPU utilization (ygoal) in the web cluster by adjusting the

number of web servers in the cluster (u), as a response to fluc-

tuation in the workload, which result in fluctuation in the CPU

utilization (e). By assigning an average CPU utilization as the

goal implies that the controller will maintain utilization around
this point within a range (± 15%). In practice, utilization is

kept between 70% and 40%. Our experience and previous

experiments have shown that these are regular thresholds since

above the upper bound, a VM becomes saturated affecting

the response time and below the lower bound, the VM is

underutilized causing unnecessary costs.

2https://aws.amazon.com/ec2/pricing/

Fig. 2. Three-tier topology of the web application.

A. Experimental setup

To deploy our web application, we first had to decide on the

sizes of VMs for each tier. For the worker servers of the web

cluster, we chose small sized machines; 1VCPU, 2GB RAM

and 20GB storage for SAVI; 1VCPU, 1.7GB RAM and 160GB

storage for Amazon EC2. In order to avoid bottlenecks on the

load-balancer and database servers, we chose large instances

for both; 4VCPU, 8GB RAM and 80GB storage for SAVI;

2VCPU, 7.5GB RAM and 2x420GB storage for Amazon EC2.

We developed our own workload generator to simulate the

same number of users that would behave in the exact same

ways for both experiments. A user would make a request to

the web application, wait for the reply (this waiting time is the

response time), and then wait 500 milliseconds (this waiting

time is considered to be the thinking time, or the time required

for a user to read and process the reply from the server).

According to this behavior, an increase in response time would

result in a decrease in the number of requests made over a

period of time (i.e. the arrival rate). The experiments start

with a constant workload, and then we add variations.

After a short period of experimentation and manual training,

the coefficients for the controller were set to:

• proportional coefficient Kp = 3
• integral coefficient Ki = 0.6
• derivative coefficient Kd = 0

In the context of our experiments, the coefficients imply

that, first, we put higher emphasis on the present error. This

means that we want the PID to produce output to immediately

correct any errors that may arise. Second, we put a lower

emphasis, but not zero, to the cumulative error. This means

that we want the controller to fix the cumulative error only

when it becomes high. This makes sense since we want the

utilization to stay within a range and not close to a single

number. Finally, we give no emphasis to future error. Given

that the workload can be very volatile with the possibility that

no discernible patterns may arise to enable predictions, we

don’t want future errors to affect the output of the controller

negatively.

To handle the automation in topology deployment, moni-

toring it in a continuous way, creating and implementing the

action plan as identified by the controller, we have used the

Hogna framework [37]. Hogna is a modular and pluggable

architecture that clearly separates the four components of
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the MAPE loop. In this regard, we can easily replace any

analysis component with the PID controller. Additionally,

Hogna provides all the metrics either through the monitoring

service of the host cloud or by registering to additional agents,

which go beyond the cloud’s monitoring capabilities. For

example, we have an agent deployed to monitor response time

on the application level.

Besides the controller, we have also implemented “proxies”

to deploy Hogna in clouds along with the application. These

proxies essentially invoke the cloud’s APIs either to pull

monitoring data or to execute the adaptive plan. One difference

between the proxies for the two clouds, Amazon EC2 and

SAVI, is that the former is using a flat VM deployment

while the latter is using an orchestrated deployment. A flat

deployment implies that the proxy directly invokes the service

responsible for creating and starting instances and then the

proxy is responsible for installing software to each VM and

creating the dependencies between them to define the topology.

In the orchestrated method, the deployment is specified in

an abstract way through a template that already defines the

components of the topology, the software in each component

and their relationship. When the template is implemented

concrete parameters are passed as input to create the actual

topology. The two models have differences on the level of

managing the topology, since flat topology may give the en-

gineer more control, while orchestration promotes reusability

and maintenance. Nevertheless, we found no variation in the

performance of the two clouds or of PID in them, which we

could attribute to this difference.

B. Results

Figures 3 and 4 show the results for the SAVI and Amazon

EC2 experiments respectively. One first observation is that the

controller was able to maintain utilization around the set goal

in both cases. In particular, for Amazon EC2, PID kept the

utilization closer to 55%. However, according to the motivation

behind setting the goal, PID was equally successful in the

SAVI experiment in keeping CPU utilization between 70%

and 40%.

The differences in the SAVI experiment can be explained by

instabilities in that cloud caused by hardware issues, as it can

be more probable in private clouds. For example, at the end of

the SAVI experiment we generated the same constant workload

used at the beginning. All the metrics (response time, arrival

rate and CPU utilization) being similar with the beginning

of the experiment, we investigated further why 3 VMs were

required compared to the 2 used in the beginning. We found

that because of a hardware error, one VM was unresponsive

and only two were actually handling the workload.

The experiments also revealed that the public and pri-

vate instances have different processing power, although their

nominal specifications are similar (same number of VCPUs

and similar RAM size). Indicatively, in the private cloud we

used maximum 6 instances, but in Amazon EC2 we used 9.

Additionally, the constant workload was handled by only 2

instances in SAVI, but needed 3 instances on the public cloud.
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(c) CPU utilization and number of web servers.

Fig. 3. PID controller on SAVI cloud.

This difference is another explanation for the greater variations

in SAVI. Given that we can only add or remove servers in

integer numbers (e.g. 1 at a time or 2 at a time), in SAVI

with greater processing power, adding or removing one server

has significant impact on CPU utilization. For example, notice

how significantly utilization fluctuates when we add or remove

one server around samples 250 and 300. This impact is less

significant in Amazon EC2. In theory, the PID controller can

issue decimal inputs u (which, in practice we round up), so in

principal the CPU utilization would be kept around the goal.

We have also noticed that there is a difference in shape of

the response time and arrival rate between the two experiments

(see figure 3b vs. figure 4b and figure 3a vs. figure 4a). In

the SAVI cloud the overall response time is closer to the

minimum possible (aprox. 50 ms) while in the public cloud

there is a more significant deviation that follows the arrival
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(b) Response time
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(c) CPU utilization and number of web servers.

Fig. 4. PID controller on Amazon EC2 cloud.

rate (in the public cloud the minimum possible response time

was around 100 ms). The arrival rate in the public cloud

seems to flaten when more users are accessing the system,

and doesn’t have the variations observable in SAVI (altough,

in both cases we simulated the same number of users that

behaved in the same way). This difference cannot be attributed

to saturated instances (the CPU utilization shows that there is

still capacity to handle more workload, see figure 4c). After

further investigation, we found that this bahaviour appears

because the network became saturated. In SAVI, all the traffic

was sent over a private network, with large bandwidth. For the

Amazon EC2 experiment, the traffic was sent over the public

network, with limited capacity that became saturated.

Another observation is the ability of the PID to alternate

between adding or removing 1 or 2 servers at the time. This

indicates the dynamic nature of adaptation provided by the PID

controller, which is an advantage over traditional rule-based or

threshold-based techniques as it can allow the system to react

faster to large changes.

In spite of the differences between the private and the

public clouds, the same PID controller was able to achieve

the goal in both environments. This is an indication that the

PID controller is portable between cloud environments. Ad-

mittedly, our experiment sample (two clouds, one application)

is statistically small to make any claim about a concrete proof

towards the controller’s portability. However, this indication

motivates us to further explore this possibility with additional,

more extensive experiments. Nevertheless, having attributes

the differences in trace between the two experiments to prop-

erties specific to each cloud, we can deduce that the same PID

controller for the web application works in both cases. This

is a reasonable deduction given that the controller is designed

for a given metric and on how the controller’s designed ranks

the importance of absolute divergences from a set goal (Kp),

the cumulative effect of these divergence (Ki) and the change

rate of the divergences (Kd). How the metric is measured in

each cloud is irrelevant for the controller.

VI. CONCLUSION

We have presented a control-theoretic approach to achieve

automatic scaling of web applications deployed on cloud

environments. We designed a Proportional-Integral-Derivative

(PID) controller for a web application and deployed it on

two real clouds, Amazon EC2, perceived public, and SAVI,

perceived private. Our experiments showed that the PID con-

troller maintained the predefined performance goal effectively

in both clouds. This provided us with a first indication of the

controller’s potential portability.

The experiments also indicated important differences be-

tween private and public clouds. These differences mainly

concentrated around availability, cloud capacity and resource

capacity, and cloud variability. Despite these differences, re-

flected in the measured performance of the deployed applica-

tion, the PID controller was able to maintain the goal.

This work has demonstrated partially the potential of

control-based autoscaling methods. There is still significant

margin to further investigate the full capabilities of such meth-

ods. The first step for our future work is to considerably extend

our experiments, expanding to more cloud environments, more

applications and more complicated settings to establish and

possibly prove the ability of the PID controller to be portable

across cloud environments. Our second future goal is examine

the capabilities for a network of PID controllers, known as

cascaded PID architectures. In such architectures, each PID

can be responsible for a single metric producing one kind

of adaptive actions. Combining and orchestrating such PID

controller will enable multidimensional analyses and planning

in autonomic cloud management systems.
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[19] D. A. Menascé, “Simple analytic modeling of software contention,”
SIGMETRICS Performance Evaluation Review, vol. 29, no. 4, pp. 24–
30, 2002.

[20] C. Barna, M. Shtern, M. Smit, V. Tzerpos, and M. Litoiu, “Model-based
adaptive dos attack mitigation,” in Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2012 ICSE Workshop on, ser.
SEAMS 2012. New York, NY, USA: ACM, 2012, pp. 119–128.
[Online]. Available: http://dx.doi.org/10.1109/SEAMS.2012.6224398

[21] ——, “Mitigating dos attacks using performance model-driven adaptive
algorithms,” ACM Trans. Auton. Adapt. Syst., vol. 9, no. 1, pp. 3:1–3:26,
Mar. 2014. [Online]. Available: http://doi.acm.org/10.1145/2567926

[22] C. Barna, M. Shtern, M. Smit, H. Ghanbari, and M. Litoiu, “Model-
driven elasticity and dos attack mitigation in cloud environments,” in
11th International Conference on Autonomic Computing (ICAC 2014).
Philadelphia, PA: USENIX Association, Jun 2014, pp. 13–24.

[23] Amazon, “Autoscaling,” https://aws.amazon.com/autoscaling/.
[24] Openstack, “Heat: Openstack Orchestration,” https://wiki.openstack.org/

wiki/Heat.
[25] J. Z. Li, M. Woodside, J. Chinneck, and M. Litoiu, “Cloudopt: multi-goal

optimization of application deployments across a cloud,” in Proceedings
of the 7th International Conference on Network and Services Manage-
ment. International Federation for Information Processing, 2011, pp.
162–170.

[26] H. Ghanbari, M. Litoiu, P. Pawluk, and C. Barna, “Replica placement
in cloud through simple stochastic model predictive control,” in Cloud
Computing (CLOUD), 2014 IEEE 7th International Conference on.
IEEE, 2014, pp. 80–87.

[27] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback control
of computing systems. John Wiley & Sons, 2004.

[28] A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of self-
adaptive software with control-theoretical formal guarantees,” in Pro-
ceedings of the 36th International Conference on Software Engineering.
ACM, 2014, pp. 299–310.

[29] Y. Lu, T. Abdelzaher, C. Lu, L. Sha, and X. Liu, “Feedback control
with queueing-theoretic prediction for relative delay guarantees in web
servers,” in Real-Time and Embedded Technology and Applications
Symposium, 2003. Proceedings. The 9th IEEE. IEEE, 2003, pp. 208–
217.

[30] I. Gergin, B. Simmons, and M. Litoiu, “A decentralized autonomic
architecture for performance control in the cloud,” in Cloud Engineering
(IC2E), 2014 IEEE International Conference on. IEEE, 2014, pp. 574–
579.

[31] P. Mell and T. Grance, “The nist definition of cloud computing,” 2011.
[32] T. Dillon, C. Wu, and E. Chang, “Cloud computing: issues and chal-

lenges,” in Advanced Information Networking and Applications (AINA),
2010 24th IEEE International Conference on. Ieee, 2010, pp. 27–33.

[33] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[34] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” Internet com-
puting, IEEE, vol. 13, no. 5, pp. 14–22, 2009.

[35] K. J. Aström and R. M. Murray, Feedback systems: an introduction for
scientists and engineers. Princeton university press, 2010.

[36] A. Zhang, P. Santos, D. Beyer, and H. Tang, “Optimal server resource
allocation using an open queueing network model of response time,” HP
laboratories Technical Report, HPL2002301, 2002.

[37] C. Barna, H. Ghanbari, M. Litoiu, and M. Shtern, “Hogna: A Platform
for Self-Adaptive Applications in Cloud Environments,” in Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2015
IEEE/ACM 10th International Symposium on, May 2015, pp. 83–87.
[Online]. Available: http://dx.doi.org/10.1109/SEAMS.2015.26

238238


