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ABSTRACT
Adaptability is an expected property of modern software systems
in order to cope with changes in the environment by self-adjusting
their structure and behaviour. Robustness is a crucial component of
adaptability and it refers to the ability of the systems to deal with
uncertainty, i.e. perturbations or unmodelled system dynamics that
can affect the quality of the adaptation. Cost is another important
property to ensure that resources are used prudently and frugally,
whenever possible. Engineering robust and cost-effective adaptive
systems can be accomplished using a control theory approach. In
this paper, we show how to implement a model identification adap-
tive controller (MIAC) using a combination of performance and
control models and how such a system satisfies the goals for robust-
ness and cost-effectiveness. The controller we employ ismulti-input,
meaning that it can issue a variety of commands to adapt the system
and multi-output, meaning it can regulate multiple performance in-
dicators simultaneously. We show that such a solution can account
for uncertainty and modelling errors and efficiently adapt a web
application with multiple tiers of functionality spanning multiple
layers of deployment, software and virtual machines, on Amazon
EC2, an actual cloud environment.

CCS CONCEPTS
• Mathematics of computing → Kalman filters and hidden
Markovmodels; • Software and its engineering→Cloud com-
puting; Software performance; System administration;
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1 INTRODUCTION
Novel technologies, like cloud computing and resource virtual-
ization have allowed for the better management of computation
resources of software systems leading to the need for self-managing
and autonomic systems [2], which eventually bore the field of self-
adaptive software systems. In essence, a self-adaptive system senses
the changes in the operating conditions and in the environment
and adjusts its structure and behaviour to meet its goals in the
presence of those changes. A reference MAPE architecture [14],
which consists of Monitoring, Analysis, Planning and Execution
components, allows the design and the implementation of an Au-
tonomic Manager that regulates the performance of the software
system against fluctuating incoming traffic.

While there has been major theoretical progress in the field,
there are still substantial challenges in designing and implementing
self-adaptive systems and eventually limited engineering solutions,
which can guarantee the degree of automation and robustness
expected from such an autonomic manager. Control theory has long
been a popular choice for autonomous systems, especially in the
domain of physical systems, including manufacturing, automotive
and aerospace industries. However, it is only recently that it has
been explored as an alternative for self-adaptive software systems
and its popularity has not yet reached high levels. This is probably
due to the complexity of designing such systems. Nevertheless,
the benefits in robustness and cost-effectiveness can potentially
outweigh the effort for designing control systems.

Our work aims to demonstrate and clarify the process of devel-
oping an automated controller for software applications deployed
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on cloud infrastructure. We discuss the key components of the
controller, namely the performance model and the actual control.
As far as the model is concerned, we discuss the representation
of the cloud deployment as a layered queuing network, which very
accurately captures the non-linear nature of the software perfor-
mance. We use a layered queuing model (LQM) as the performance
model and we employ Kalman filters as the parameter estimator.
In contrast with the model, we opt for a simpler, yet as robust
as required, linear controller. We detail the construction of this
controller through the linearization of LQM. More importantly, we
discuss the benefits ofmulti-linearization, which constitutes a novel
contribution, at frequent intervals as the system progresses and its
conditions change during runtime. The linear controller of choice
is called linear quadratic controller (LQR). The synergy between
LQM, Kalman and LQR results in a model identification adaptive
controller (MIAC) architecture, which eventually constitutes our
autonomic management system (AMS).

The remainder of the paper is organized as follows: Section 2
presents the proposed architecture and the development process.
Section 3 presents the experimental results that validate our ap-
proach. Section 4 discusses the key challenges we had to overcome
and the key lessons we learned in the process of developing a MIAC
controller. Section 5 introduces the background and related work.
The conclusions are presented in Section 6.

2 MODEL IDENTIFICATION ADAPTIVE
CONTROLLER

To construct a management system based on a MIAC architecture,
we need two key components; the performance model and the
controller. In this section, we first describe the layered queuing
model (LQM) [10] used to capture the performance of the subject
software system. We present how the model is designed to operate
under uncertainty so that it allows the controller to be robust against
perturbations. Second, we describe the process to design a linear
quadratic regulator (LQR) [2] as our controller. We discuss how
LQR consumes the state of the system through the performance
model, and how the latter has to first be linearized. Necessary steps
are also discussed so that the controller can handle dynamic and
volatile environments through an adaptive recalibration cycle.

2.1 Performance Model
We opt to use a similarly non-linear model, a layered queuing model
(LQM) to capture the system’s performance. According to LQM [10],
the functional tiers of the system are represented as queues, intro-
ducing delays to the service time of the overall system, and the
nested nature of the infrastructure (software, VMs) is represented
as layers. The model orchestrates the layered queues to evaluate the
state of the system. The state of the system can be any quality in-
dex representing its performance, e.g., CPU utilization or response
time, and it is determined mathematically as a set of functions of
the incoming workload (w), the topology of the system’s infras-
tructure (u) and the demand of the service requests in terms of
resources for each queue (d). Formally, the discrete time model is
y(t) = LQM(w,u,d), wherey(t) is the vector of the system’s output
for a given moment in time t . Assuming that the demands of the
system are known (by measurement or estimation), we can use the

model to estimate the output under any combination of workload
and infrastructure. It is important to note here that while u repre-
sents the topology of the system for the LQM, it also represents the
input of the controller, i.e., the commands, which are also scaling
actions upon the system’s infrastructure.

2.1.1 Modelling under uncertainties and volatility. When an ap-
plication is deployed on cloud, its performance is affected by the
dynamics of the cloud infrastructure. Only certain cloud compo-
nents (such as VMs) are visible to the application modeller, others,
including hardware or resource management services, are not vis-
ible. However, these invisible components may be the cause for
delays, which affect the application performance. Although such de-
lays are reflected in the measured performance metrics, their source
cannot always be identified [19, 20] and, thus, they are considered
uncertainties.

There can be two types of uncertainties that may affect the accu-
racy of the application model in cloud and therefore the efficiency
of the performance controllers we design: parametric uncertainties
and unmodelled dynamics. The parametric uncertainties refer to
both parameters of the model (such as service times, number or
probabilities of calls between different components of the software,
communication delays, etc.) or the intensity and mix of the work-
loads. The unmodelled dynamics refer to structural deficiencies of
the model, that is missing components and queues that we have
not knowledge of. The latter are very important in cloud where we
do not have complete knowledge of the deployment environment.

 LQM of 

Application 

  

         

  
   

   

Figure 1: Extended LQM. Includes structural uncertainties

To account for unmodelled dynamics, we add two sub-models to
extend the application model as seen in Figure 1: a serial sub-model,
made of a queuing centre, ∆s , and a parallel sub-model, made of
another queuing centre, ∆p. The serial model ∆s will account for
the delays in the application requests processing, due to additional
proxies in the cloud. The parallel model ∆p, will account for speed
ups at higher loads, due to possible caching or heterogeneity of
the cloud resources. The parameters of those queuing centres, such
as service times and visit probabilities (for the parallel model) are
unknown at design time and they will be identified at runtime
together with other parameters of the model. As a result, the archi-
tecture of the LQM model will consider the model for the deployed
application in the cloud, as well as these two additional queuing
centres.

Parametric uncertainties can occur due to the high volatility of
the application’s environment, either with respect to users, e.g.,
changes in volume or type of incoming traffic, or the cloud deploy-
ment, e.g., changes in number or type of resources. The model is
valid for a specific mix of workload and infrastructure. When the op-
erational conditions change (a change in the topology, the workload
intensity or the type of the workload), the model becomes outdated

Cloud Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

177



Runtime Performance Management for Cloud Applications with Adaptive Controllers ICPE ’18, April 9–13, 2018, Berlin, Germany

and needs to be retuned. In the case of the proposed LQM, this
tuning happens with the use of Kalman filters. Prebuilding all the
models at design time is infeasible because of the large number of
possible changes and combinations of changes. Therefore, runtime
retuning of the model is more efficient and, therefore, preferable.
This gives the adaptive nature to our MIAC architecture.

2.2 Control System
Having captured the performance of the managed application as
a non-linear model, we can now proceed to design the controller,
which will consume said model. We opted for the feedback con-
troller LQR, where the system is modelled as a set of linear differ-
ential equations and the goal is modelled as a quadratic function. A
significant advantage of feedback controllers is that they can give
an optimal, in terms of efficiency and effectiveness, set of adaptive
actions both automatically and fast. Alternatively, we would have
to simulate and evaluate every possible combination of states and
adaptive actions, possibly over multiple dimensions, in terms of
performance parameters and types of resources, before we can find
the optimal adjustment.

2.2.1 Linearizing and discretizing the models. Given how LQR
is specified, the first step is to linearize LQM and feed the linear
models in the controller. We can extract such a linear model, if we
observe the behavior of the system around an operational point
(OP) [xop ,yop ,uop ], where x generally refers to the state of the
system, i.e., the monitored performance metrics, y is the observable
output of the system and u is the controller’s input commands, i.e.,
the adaptive actions. If we focus closely to the OP, we can linearly
approximate the system’s behavior from the non-linear model. We
can take points close to the OP in discrete time k by applying the
corresponding deltas (i.e. small differences). In the case of a cloud-
deployed software system, given an OP, the process can be achieved
by slightly varying the infrastructure (commands u) with respect to
that of the operational point. At this point and within a small range,
we can assume that the workload is constant. Thus, by taking model
measurements for slightly different commands, we can generate a
set of discrete points around the operational point.

Using these equations to find points close to the operational
point, we can define a discrete-time linear system described by:{

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
(1)

where A, B, C and D are matrices; y, u and x are vectors. When the
matrices are constant in time, the system described by Equation 1
is a linear time invariant (LTI). To find the matrices A, B, C and
D, which make up the linear approximation of the system, given
the OP and some points around it, we use linear regression. Given
that linear regression is simple and efficient, we chose it in order
to create models that may be valid for points further than the OP.
Other linearization techniques focus too much around the OP. In
our case, we can afford to sacrifice some of the accuracy, since
according to our method the linear model will at some point have
to be updated around a new OP.

2.2.2 Designing the controller. After the linear model is avail-
able, the next step is to design the actual controller in terms of the

goals to be optimized. More specifically, the goals are defined as a
performance index across the state and command variables in form
of a quadratic function (Equation 2), with the objective of finding
the command u that minimizes this quadratic function subject to
the system in Equation 1. The weight, or penalty, matrices Qx and
Qu penalize the state variations or the cost of adaptive commands,
respectively. The construction of the weight matrices depends on
the domain on which we apply the controller. Although the matrix
Qu refers to cost, it does not necessarily capture it directly as the
monetary cost for resources, set by a provider. More precisely, it
declares the preferences of the system’s designer on the various
commands. Nevertheless, the matrix can be derived directly from
the provider’s financial costs through some mathematical trans-
formations, thus producing cost-effective adaptations. The specific
design method of the penalty matrices remain out of scope for this
work, although we validate the impact of choosing different penalty
matrices.

J =
∞∑
0
xTQxx + u

TQuu (2)

An optimal, feedback controller will find the u that minimizes
J . Given the linear model and Equation 2 and assuming that the
system is controllable, the steps to synthesize the controller [2]
are summarized next. The optimization problem has the following
solution:

u = −Kx + kryr (3)
where x is the system’s state as defined earlier, yr is the goal for
the output, K is the feedback gain matrix and kr is the steady-state
factor.

The feedback gain matrix guarantees that the system will remain
stable, in the form of y = 0, meaning that the output of the system
will remain close to the operational point (ya (k) = yop ). Since our
goal is to bring, in fact, the output towards its desired state (i.e.
y = yr ), we need another factor, which is kr .

K is calculated with LQR as:

K = −Q−1
u BT Px

where P ∈ Rn×n is a positive definite, symmetric matrix that satis-
fies the Riccati equation:

PA +AT P − PBQ−1
u BT P +Qx = 0

Based on K , we can calculate kr by solving the following equation:

1 = C(A − BK)−1Bkr (4)

2.3 Autonomic Management System
With the LQM performance model and the LQR controller con-
structed, we can move on with building the final autonomic man-
agement system for cloud applications, following the MIAC archi-
tecture as illustrated in Figure 2. This architecture has the ability to
be robust in the face of uncertainty, thanks to the extended LQM
performance model(which incorporates the structural uncertaini-
ties), and in spite of the dynamic nature of the software system,
thanks to the recalibration and relinearization of the LQM when it
becomes outdated, so that LQR has always an accurate model to
operate with.
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The flow of data and control is further presented in Algorithm 1.
The algorithm requires as input four sets W, Y, U, and X. W
contains the names for the workload parameters that are to be mon-
itored. Y contains the outputs of the system, which will determine
whether the system operates normally or not.U contains the set of
resources or parameters, e.g. number of threads or servers, which
we can change to bring the system back to a healthy state. X is a
subset of measured or estimated performance variables that we use
in linearized model SetsW,Y U and X are nominal sets, meaning
they only specify what is to be included, based on which the actual
measurement vectorsw , y, u, x are monitored or generated by the
manager. Apart from these four sets, the algorithm requires as input
the original (before runtime calibration) non-linear model, LQM0.

Software system 

             

  

Controller (LQR) 
 

Kalman Estimator 

Extended
LQM 

Linear
Model 

Controller 

Synthesizer 

y

d

Figure 2: Model Identification Adaptive Control Architecture.

Algorithm 1: Model Identification Adaptive Controller (MIAC)
input :W – the set of workload parameters to be monitored;

Y – the set of system outputs;
U – the set of possible commands;
X – the set of state variables;
LQM0 – the original non-linear performance model

1 while TRUE do
2 for each sampling interval t do
3 Measure system variables → [yc , uc , wc ];
4 Estimate performance parameters(Kalman) → [dc ];
5 Update Extended LQM
6 if linear model not accurate– its outputs deviates from those of

LQM; then
7 Set [xop, yop, uop ] = [xc , yc , uc ];
8 Linearize LQM → [A, B, C, D];
9 Synthesize LQR for linear model → [K, kr ];

10 Controller produces adaptive commands → ∆u ;

In step 1 of the algorithm, and illustrated in Figure 2, it can be
seen that the monitoring and control of the system by MIAC is a
closed loop. Step 2 is the iteration over time. At each iteration, we
maintain the model synchronized through Kalman calibration. In
step 3, we measure the current state of the system, where vector yc
contains the current measurements for the system’s outputs, vector
uc is the current configuration of the system, for example, its virtual
resources and their topology, and vectorwc is the current state of
the workload, e.g., arrival rate. In step 4, the Kalman Estimator
estimates the new performance parameters, with which it updates
the extended LQM, in step 5. In step 6, we check whether the

current linear model is still accurate, after the update of LQM. If
not, then, we activate the upper loop of Figure 2. We, first, use the
current state of the system, as extracted in step 3, to define a new
operational point in step 7 (as discussed in Section 2.2.1), where
vector xc includes measurements for the system’s current state
as they come from the monitoring service. In step 8, the updated
LQM is linearized, a process which is detailed later, where A, B,
C , and D are the coefficient matrices for the linear model. Based
on the linear model, in step 9, we design an optimal controller, as
described in Section 2.2.2. The controller is now ready to operate
in the lower loop of Figure 2. By monitoring the deployed system
and comparing its behavior against a set of goals yr , in step 10, the
controller can issue a set of commands u to rectify any problematic
situations.

Notice that the upper loop of Figure 2 is activated only when the
linear model diverges too much from the actual system (step 3 of
Algorithm 1). If the linear model is accurate, then only the lower
loop is executed. This will ensure that the controller is always
valid for the current state of the system. A second observation is
that when the output of the system is the same as the goal (i.e.,
y = yr ), then the command set produced by the controller ∆u is
empty; this result is guaranteed by the mathematical definition of
the controller.

3 EXPERIMENTAL STUDIES
To validate the MIAC manager we constructed in the previous
section, we have conducted a series of experiments. For all experi-
ments, we deployed a bookstore application, developed using J2EE
technology, on multiple Linux (Ubuntu) virtual machines on the
Amazon EC2 cloud. The application performs various SQL com-
mands (select, insert, update). We developed an LQMmodel for this
setting to capture the performance of the application. The efficiency
of the controller was first validated on the model itself and later
on an actual deployment in Amazon. Any change in the controlled
system is reflected in the model. In the initial topology, the database
server (MySql) was deployed on one instance, the web application
server (Tomcat) was deployed on two instances, while a fourth
instance was acting as a load balancer (Apache 2) to distribute the
incoming web requests between the application servers.

As input to our algorithm and in order to design the controller,
we need to define the set of commands U, the set of monitored
state parameters X and the set of controlled system outputs Y. We
define the command points for our system asU = [Sd ,Td , Sw ,Tw ],
where Td is the number of threads for database servers and Tw for
web servers; Sd is the number of database servers and Sw is the
number of web servers. The state vector, x , contains the response
time of the web application, the same as the output vector, y (see
Equation 1). For the rest of our experiments, when we refer to
specific values of these vectors, we will note them with their lower
case representation, i.e. u, x and y.

We construct the LQM using the OPERA tool [16] to track the
behavior of the system. In every iteration, the LQM is retuned
using Kalman filters to recalculate the model parameters, so that
the model remains accurate.
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(a) Without re-linearization. (b)With re-linearization.

Figure 3: Behaviour of the system when the goal for Response Time was set to 1000ms and the workload monotonically increases / decreases.

To linearize the LQM, we have used the LinearRegression
function from the package optim [1] in Octave to calculate the
matrices A and B from Equation 1.

We have also chosen C = [1] and D = 0. The reason for this is
because we picked response time to represent both the state and
the output of the system. From Equation 1, we have that y(k) =
Cx(k) + Du(k). Given that y = x , it is derived that C = [1] and
D = 0.

For the LQR, we have used the implementation offered by Oc-
tave’s package control [18]. The parameters for the lqr function
were the matrices A and B identified during linearization and the
following weight matrices Qx and Qu :

Qx = [1]; Qu =


100 000 0 0 0

0 1 000 0 0
0 0 100 000 0
0 0 0 1 500

 (5)

The lqr function calculated the matrix K as discussed in Sec-
tion 2.2.2. To calculate kr , we assumed that all of its four compo-
nents were equal and applied the Equation 4:

kr =
1

b1 + b2 + b3 + b4
×


1
1
1
1

 × (1 − (A − BK))

where bi are the components of B:

B =
[
b1 b2 b3 b4

]
K and kr form our controller, and allow us to calculate a com-

mand by applying Equation 3.
For the first experiment (Figure 3), we have set the goal for

the response time to be 1000ms. As for the workload, we start
with 18000 users, linearly increasing up to 23000 and then linearly
decreasing again down to 18000 users. Figure 3a shows the behavior
of the system when using a conventional LQM, liniarized only at
the beginning of the experiment, thus creating only one controller
(K and kr from Equation 3), while Figure 3b shows the behavior

when the LQM is relinearized every time its error (the difference
between the measured response time and the estimated one using
the linear model) exceeds the threshold of 100ms.

The experiment shows that when we linearize often (we have
built 31 linear models for the whole duration of the experiment), we
manage to stabilize the system andmaintain the response time close
to the desired value. Also, the value of J (Equation 2) in this case
was approximately 21× 106, which is significantly smaller than the
value obtained with a single linearization: 17×109. Considering that
the goal of the controller is to minimize J , this shows that multiple
linearization is a significantly better model. Figure 3a shows that
the controller fails to maintain the response time close to the goal
when the workload fluctuates.

Runningmore experimentswith different goals (at 300ms, 500ms
and 700ms) produced similar results: the relinearization of the LQM
model enabled the controller(s) to maintain a response time close to
the desired goal, while doing a single linearization at the beginning
of the experiment generated poor results.

In the second experiment, we wanted to evaluate the behaviour
of the system in the presence of irregular workload, i.e., when
the workload suddenly increases or decreases non-monotonically.
The results are summarized in Figure 4. The bottom plot shows
the shape of the workload. The goal for the response time in this
experiment was set to 700ms and as it can be seen in the figure, the
controller is able to stabilize the system around this goal. In fact,
the controller helps the system achieve an average response time
of 703ms (standard deviation of 73.37).

In order to evaluate the influence of the weight matrices Qx and
Qu on the behaviour of the controller, we have set up an additional
experiment with the following matrices:

Qx = [1]; Qu =


1 000 0 0 0
0 100 000 0 0
0 0 1 500 0
0 0 0 100 000

 (6)

We set the response time goal to be 700ms, and then increased
the workload linearly and then decreased it, also linearly. Figure 5a
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Figure 4: Behaviour of the system when the goal for Response Time was set
to 700ms, and the workload increasing/decreasing suddenly.

shows the behaviour of the system when the matrices from Equa-
tion 5 (prefer to add servers) are used, while Figure 5b shows the
results for matrices from Equation 6 (prefer to add threads).

In both situations, the system was stable and the goal has been
maintained. Using the matrices from Equation 5, the value for J
(Equation 2) was approximately 27 × 107; the utilization of the
weights from Equation 6 resulted in a value for J of almost half, in
the range of 14 × 107. This experiment shows that the choice of the
penalty matrices affects the adaptation strategies, but performance-
wise LQR remains unaffected.

In the last experiment, we deployed our topology on the Amazon
EC2 cloud along with the MIAC system. We used small instances
(1 CPU, 2 GB RAM and 160 GB hard drive) for the web cluster and
the database. We used the regular workload (linearly increasing
and then decreasing) starting with 35 users reaching a maximum of
about 85. We set the goal for response time at 300ms. We bounded
the number of VMs in theweb cluster between 1 and 16.We consider
relatively small clusters in order to keep the cost of the experiment
low, given that it is conducted with an actual public cloud provider.
In addition, given that our database is a single-node MySQL server,
we did not consider scaling this cluster. Therefore, it was removed
from the set of available commands of the controller. To simplify
our experiments, we also excluded web and database threads from
consideration due to this reason. Therefore, only the web cluster
was scaled. We monitored the system every minute. After every
scaling action, we enforced 6 minutes of scaling inactivity to allow
for the elastic operation to finish and the system to stabilize itself.

As it can be seen in Figure 6, MIAC was able to maintain the
response time close to the set goal even in a real deployment, fur-
ther strengthening our argument for a robust controller. In fact, the
average error was 3.5ms, with a standard deviation of 84.09. Natu-
rally, it cannot be expected for the controller to keep the response
time exactly on the goal. One reason is that for small clusters, the
addition or deletion of a single VM can have a great impact to the
performance. Nevertheless, response time was eventually kept at
the desired levels. In addition, as the figure shows for the response
time, the recalculation and calibration of the LQM model resulted

in very accurate estimations, with the average error between the
measured metrics (m) and the estimated ones (e) from the model to
be 0.55ms (standard deviation of 13.43).

4 LESSONS LEARNED AND CHALLENGES
In this paper, we present our process for building a controller to
manage the performance parameters of software systems. The task
on its own is not trivial and requires a solid background on the
mathematical foundations of control theory and the performance
model used by the controller. For this reason, in this paper, we also
provide all the theoretical details on the LQM model and the LQR
controller we built. Although the effort may seem too much com-
pared to other less complex techniques, the benefits can possibly
outweigh the extra effort [9]. More specifically, as we have shown
the adaptive nature of our controller through the multilinearization
process make the controller be more resilient and robust against
perturbations coming from the system or its deployment environ-
ment. Additionally, thanks to the runtime adaptive mechanisms
of both the model and the controller, this extra effort is required
only once during the design of the controller, and afterwards the
management system requires little to no maintenance, unless the
system itself changes.

Another challenge in setting up a controller for software per-
formance is understanding the nature of the inputs and their con-
straints. For example, in public clouds, computations resources
(VMs) come in packages predefined by the provider. Therefore,
resources may not be added individually, e.g., only memory or
only CPU. This detail has to be carefully taken into account when
designing the controller, since the impact of the adaptive action
can be less fine-grained than the action seemingly is. This is the
main reason behind our choosing response time to choose both
the state and the output of the system. The addition of a VM may
add multiple resources at the same time (CPU, memory, disk), but
its exact effect will be definitely measurable on response time. If
we were to model the utilization of the individual resources, the
addition/removal of a VM would change all utilizations, even if the
respective resources had no problem, which could actually affect
the whole control process.

Another issue related to the predefined sizes of VMs is that one
can add whatever resources the VM offers at minimum. For example,
if at one point the application needs one additional CPU core to
fix its response time, but we assume that the smallest VM available
has 2 CPU cores, the controller cannot do anything but add a VM
with 2 cores. This problematic behaviour is exacerbated by the
fact that our actions are discrete (e.g., add/remove one, two, three
VMs), but the command of the controller can be continuous (e.g.,
add 1.5 VMs). In this case, a meta-decision needs to be taken (do
we round up or down?), which can depend on other factors, for
example cost or minimal error compared to goal. In any case, this
can cause oscillation or overshooting, as it is exemplified in Figure 6,
where response time “jumps” when we add or remove a VM. We
can mitigate this situation by selecting a good mix of fine-grained
and coarse-grained inputs for our controller. In our experiments,
the threads play the role of the fine-grained command, while the
VM is the coarse-grained solution. An alternative to the coarse-
grained VMs can be the use of containers, like Docker, where one
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(a) Using the Qx and Qu from Equation 5. (b) Using the Qx and Qu from Equation 6.

Figure 5: The effect of the weight matrices Qx and Qu on the behaviour of the controller.
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Figure 6: Behaviour of the system with a real deployment on Amazon EC2.
Regular workload was used and the goal was set at 300ms.

can slice the host’s resources at will and create some more granular
than the smallest VM available. Nevertheless, containers may pose
challenges on their own like, for example, having one more layer
to manage [8] or how container resources can be modelled in a
layered queuing model [3].

An important conclusion we drew from the exercise of building
MIAC controller is that the effectiveness of a controller imple-
mented using this methodology relies heavily on the capabilities
of the model. Resources that cannot be modelled cannot be cap-
tured by the controller. In our case, OPERA cannot capture the
memory of a software system, so the controller we developed is not
able to use memory as a command. In other words, even if our re-
sources where granular enough to allow us to issue commands like
increase/decrease the memory, we could not have done so, because
the controller would not have been able to asses the impact of the

new memory using the model. The key lesson for practitioners here
is that the limitations of the model are transferred to the controller.

5 BACKGROUND AND RELATEDWORK
Feedback loops have been identified as important components in
self-adaptive systems [5, 15]. At the conceptual level, feedback
loops follow the MAPE architecture [14], but at the implementation
levels there are many variations. A prevalent one is based on control
theory [4] and has been used for some time. Hellerstein et al. [13]
introduced several case studies, where control theory has been used
for controlling the threading level, memory allocation or buffer pool
sharing in commercial products such as IBM Lotus Notes and IBM
DB2.

Although the performance in software is more accurately mod-
elled with non-linear models, many authors use linear models due
to their simplicity [7, 12, 13]. Because themodels are linear and valid
only around the linearization point, controllers designed based on
linear models will most likely be valid only around that linearization
point and will not be able to handle a large spectrum of perturba-
tions. This is a well known problem in the control of non-linear
systems and often control switch approaches [17] are employed
to switch between many statically designed controllers. In this pa-
per, we consider the system to be non-linear, represent it with a
non-linear model and then linearize it at runtime, around multiple
operational points. In this case, the system is modelled as series of
linear models and one controller, which is updated multiple times
at runtime.

One of the most important reasons for having a model is to
study the properties of the system it models and then to design the
controller. In control theory, the significant properties are stabil-
ity, controllability, observability. Stability is probably the the main
raison d’être of control theory. In simple terms, stability means
that for bound inputs (commands), the system will produce bound
state and output values. Examples of stability studies in control
of software and computing systems have been presented in [13].
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Observability is the property of the model that allows finding, or
at least estimating, the internal state variables of a system from
the output variables. This property is important from pragmatic
point of view. In a real system, it is impossible, hard or impractical
to measure all state variables. On the other hand, the commands
and outputs are easier to measure. Examples of how to use observ-
ability and how to estimate software performance parameters for
applications deployed across multi-tiers and using Kalman filters
are presented in [21]. Other authors have used other techniques to
estimated runtime model parameters [6] on the same assumption
that the system was observable. The concept of controllability (or
reachability) describes the possibility of driving the system to a
desired state, i.e. to bring its internal state variables to certain val-
ues [2]. This property ensures that we can design a controller. We
use the concept of observability, in our paper, when we estimate
the performance model in cloud. In this aspect, we extend [21] for
cloud environments. Our goal is to achieve controllability across a
large design space and for any model and controller we design and
to make the system stable. Although one can synthesize empirical
controllers [11], we follow classic control theory to build optimal
controllers [15].

6 CONCLUSIONS
In this work, we demonstrated the construction of a model iden-
tification adaptive control architecture as a management system
to monitor and maintain applications on cloud environments. Our
experiments have shown that the use of control theory in an Adap-
tive Manager for cloud applications performs exceptionally well
and can produce a robust and effective controller. Additionally, the
mathematical background of control theory allows us to systemati-
cally design and verify such adaptive management systems. This
method is capable of operating on a multidimensional level both
with respect to the goals that are to be achieved, as well as the
adaptive actions. The proposed controller performs better than pre-
vious methods thanks to the concept of multilinearization, which
allows the controller to readjust itself in order to better monitor
the system and produce more efficient adaptive actions. Our exper-
iments on Amazon EC2 showed that our controller is applicable
and performant in real settings.
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