
Delivering Elastic Containerized Cloud Applications
to Enable DevOps

Cornel Barna, Hamzeh Khazaei, Marios Fokaefs and Marin Litoiu

Department of Electrical Engineering and Computer Science

York University

Toronton, ON, Canada

{cornel,mlitoiu}@cse.yorku.ca, {hkh,fokaefs}@yorku.ca

Abstract—Following recent technological advancements in soft-
ware systems, like microservices, containers and cloud systems,
DevOps has risen as a new development paradigm. Its aim is
to bridge the gap between development and management of
software systems and enable continuous development, deploy-
ment and integration. Towards this end, automated tools and
management systems play a crucial role. In this work, we propose
a method to develop an autonomic management system for multi-
tier, multi-layer data-intensive containerized applications based
on a performance model of such systems. The model is shown to
be robust and accurate in estimating and predicting the system’s
performance for various workloads and topologies, while the
AMS is capable of regulating the application’s behaviour by
taking independent actions on its various parts.

Keywords-devops; cloud computing; autonomic management
systems; performance models; continuous delivery; containers;
scaling; multi-tier big data applications;

I. INTRODUCTION

In recent years, there have been parallel advancements

in software engineering and the infrastructure that supports

the software applications. The associated technologies, in-

cluding cloud computing, containers, microservices and web

services, have provided additional flexibility in the develop-

ment, delivery and maintenance of software. More importantly,

lightweight infrastructure technologies, like containers, and

small self-contained software functionality, like microservices,

have given rise to the DevOps paradigm. DevOps [1] is a

development model, whose mission is to bridge the gap be-

tween development and operations management, i.e., that part

which guarantees the proper function of the software system

and its quality after it has been developed or even after it has

been deployed. Bringing Ops closer to development enables

changes to be incorporated in production code seamlessly and

faster with less impact to users and clients.

Autonomic management systems (AMS) [2] and the ability

of the software system to self-adapt to external stimuli and

regulate its own behavior are integral parts of the DevOps

process. In practice, AMS constitutes the automated tooling

of the operation management side. As a consequence, it is

vital for the process to have good adaptive capabilities [3] to

guarantee what became known as continuous delivery, i.e., the

ability to absorb changes of any kind in a transparent manner

to the clients. The wealth of available technologies in cloud

computing for autonomic management and the abundance of

available solutions to solve recurring performance problems

may actually create additional challenges for the develop-

ers. One important decision is about the functionality and

the architecture of the AMS. For complex software systems

that consist of many microservices and utilize a number of

virtualization technologies, one has to wonder whether there

is enough control and knowledge over the module to design

a single, overarching AMS or multiple independent ones for

each module. Another question is if there are multiple adaptive

actions that can achieve the same goal, which one we pick

and according to what criteria. In this situation, models can

be of particular help as they give the opportunity to consider

a number of different actions and solutions, evaluate them

and, eventually, through systematic decision-making processes

pick the optimal one. The models are part of the analysis and

planning modules of an AMS.

In this work, we focus on multi-tier and multi-layer data

intensive applications and their autonomic scaling. This class

of applications has web, analytics and data tier clusters and

need to scale all tiers to accommodate the web traffic. We

provide responses to two relevant research questions:

Research Question (RQ1): How can we model the perfor-
mance of a multi-layer, multi-tier, data intensive web system?
For a performance model, used by the analyzer and planner of

the proposed AMS, we need to consider a minimal but compre-

hensive structure which is easy to create by the development

team; its parameters on the other hand have to be collected

or estimated at runtime, during operations management. The

high dimensionality of the problem would impose a multi-tier

and multi-layer performance model and respective analysis and

planning phases for the AMS.

Research Question (RQ2): Can we design and implement
a single autonomic management system for multi-layer, multi-
tier web architectures?
As far as the AMS is concerned, we are interested in exploring

primarily its feasibility. Considering the multi-dimensional

nature of the problem, the design and development of such

a system is not trivial and a number of parameters need to be

taken into account; monitoring agents need to be coordinated,

interdependent actions need to be taken, externalities to be

considered, and, eventually, manage to have a robust manager

in place to guarantee the system’s proper behaviour.

Through practical work and software development to answer

2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

978-1-5386-1550-8/17 $31.00 © 2017 IEEE

DOI 10.1109/SEAMS.2017.12

65

2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

978-1-5386-1550-8/17 $31.00 © 2017 IEEE

DOI 10.1109/SEAMS.2017.12

65

the previous questions, our work results in two contributions:

1) A self-tuning performance model for multi-tier and

multi-layer containerized applications deployed on

cloud, based on layered queuing networks [4]. For a

four-tier, three-layer architecture, including clients, a

web tier, an analytics tier and a data tier, the model is

able to receive the traffic for the system (in number of

active users/clients) and its underlying topology (VMs

and containers), and output its performance in CPU

utilization for each tier, throughput and response time.

In the presence of an anomaly, i.e., irregularly high or

low metrics, the AMS can input different topologies to

the model, varying the number or size of containers, in

an attempt to find actions that rectify the problem.

2) An architecture and a working implementation for an

autonomic management system for multi-tier, multi-layer

data-intensive web applications. The proposed AMS has

monitoring agents, which gather performance measure-

ments from all layers (VMs, containers and software),

uses the performance model to analyze problematic

situations and plan for potential adaptive actions to fix

them, and, finally, it can connect to any execution engine

exposing an API, and perform the actions on the system

to regulate its behaviour.

The rest of the paper is organized as follows. In Section II,

we outline relevant literature on the topics of DevOps, con-

tainer scaling and performance modeling. Section III details

a novel performance model for multi-layer, multi-tier data-

intensive web applications, while Section IV presents the

architecture and implementation of the respective autonomic

management system. In Section V, we present a set of exper-

iments to validate the performance model and the AMS and

prove their applicability on actual settings. Finally, Section VI

concludes our work.

II. RELATED WORK

DevOps [1] can be considered as a novel development

process or model or paradigm or even philosophy. Its primary

goal is to bridge the gap between development and operation

management. In this capacity, it recommends the use of tools

and processes, as well as knowledge and skill sets, which

would span across the entire lifecycle of the software. The con-

cept existed, even before it was named DevOps [5]; developers

would tinker with system administration tools and concepts to

better understand how the software is to be deployed, while

IT operators would occasionally merge with the development

team to better understand the system’s functionality and ensure

higher quality. Thanks to virtualization technologies and the

self-adaptation concepts, DevOps is the beginning of a new

software development culture and a new breed of hybrid

developers and IT specialists.

Another mission of the DevOps model is to shorten the

release cycle of the software [6]. The goal is for every change

to be incorporated seamlessly to the system in production,

while high quality is ensured and maintained [7]. Netflix is

already employing chaos engineering techniques [8], which,

in the context of DevOps, enable concepts such as continuous
deployment and continuous delivery.

Balalaie et al. [9] present their experience in migrating

a monolithic mobile-back-end-as-a-service (MBAAS) to a

microservice architecture. Apart from the common pains and

suffering of migrating a legacy system to a service-oriented

architecture, they had some interesting experience with respect

to the DevOps side of the process and the final system. First,

they had to change the team organization from a horizontal

structure (development, QA, operations) to more vertical teams

with all layers responsible for the smaller services. Second,

they report on the importance of monitoring the system and,

finally, on the use of containers to bridge the gap between the

development and the production phases.

Even though containers is a technology whose popularity

has only recently been increasing, scaling, and even autoscal-

ing, is an issue, which has already received attention by

practitioners and researchers. In practice, scaling may refer

to either the VM hosts or the actual containers. Focusing

on the latter, there are several tools that support scaling of

containers, including popular choices, such as Kubernetes [10],

[11] from Google, Docker Swarm in conjunction with Docker

Compose [12], [13], the native orchestration service of Docker,

and Mesos [14] with Marathon [15], [16]. Other solutions

are offered by Microscaling [17], which offers autoscaling

capabilities, and the Amazon EC2 containers service based on

alarms from the CloudWatch monitoring service [18]. These

tools provide mostly reactive, threshold-based solutions, when

they allow for autoscaling capabilities, where the scaling plans

are usually static and defined in design time. Conversely, the

proposed solution, thanks to the performance model, can be

dynamic with respect to the scaling plan and, potentially, it can

also be proactive in the sense that it can alleviate a problematic

situation immediately and avoid incremental actions, with

slow reaction, that can compromise the system’s performance.

Practically, the model can be used as a complement to any

AMS. On the other hand, the proposed AMS is capable of

handling complex architectures with multiple tiers, as well

as perform actions on multiple layers. This capability is not

definitively proven in existing tools.

Layered performance models have been proposed before

for client-server systems [4], but not for containerized ap-

plications and for cloud. In cloud, as shown in the next

sections, we have to account for unknown delays. As far as

parameter estimation is concerned, Woodside et al. [19] and

Epifani et al. [20] presented frameworks to tune non-functional

properties including performance. Epifani et al. provide a

Bayesian technique to re-estimate probabilities, which can be

applied to different formal models such as Markov chains or

queuing networks. The methodology presented in this work is

based on Kalman filters [21] and focuses on tuning a multi-

layer and multi-tier performance model and its applicability

to modifying the application topology on demand in response

to changes in a volatile environment such as cloud. Huber

et al. [22] follow a similar model-based approach, based this

time on the Descartes Modeling Language (DML) to propose

6666

an adaptation framework for cloud resource management.

The framework is quite comprehensive providing end-to-end

adaptation from the virtualization layer to the application layer,

complemented with predictive capabilities.

Performance analysis of cloud services considering contain-

ers as a virtualization option is in its infancy. Most of the works

compare the implementation of various applications deployed

either on VMs or containers. Joy [23] conducted a performance

comparison including a three-tier cloud application for storing

and retrieving data for the Joomla framework. It was shown

that containers outperform VMs in terms of performance and

scalability. Container deployment processes 5x more requests

compared to VM deployment and also containers outper-

formed VMs by 22x in terms of scalability. This work shows

promising performance indexes when using containers instead

of VMs for service delivery to end users.

Ali et al. [24] performed a comprehensive study on perfor-

mance evaluation of containers under different deployments.

They used various benchmarks to study the performance of

native deployment, VM deployment, native Docker and VM

Docker. In native deployment, the application is installed in a

native OS; in VM deployment, the application is installed in

a vSphere VM; in native Docker, the application is installed

in a container that runs on a native OS; and finally, a Docker

container including the application is deployed on a vSphere

VM that itself is deployed on a native OS. Redis1 has been

used as the back-end datastore in this experiment. All in all,

they showed that in addition to the well-known security, isola-

tion, and manageability advantages of virtualization, running

an application in a Docker container in a vSphere VM adds

very little performance overhead compared to running the

application in a Docker container on a native OS. Furthermore,

they found that a container in a VM delivers near native

performance for Redis and most of the micro-benchmark tests.

III. MODELING THE PERFORMANCE OF MULTI-TIER

MULTI-LAYER DATA-INTENSIVE APPLICATIONS

In this section, we first outline the general architecture and

characteristics of the subject application, which our model and

AMS are intended to be applied on and then we go into details

as to how we model the performance of such applications.

A. Subject Application

In the context of our work, we focus on four-tier, data-

intensive web applications, employing a web service layer, a

big-data analytics tier and a NoSQL database (see Figure 1).

The application is intended to have high throughput and be

able to handle a large and increasing number of users. The

three functional, and scalable, tiers of the application are

deployed on containers, which in turn are hosted on virtual

machines. This deployment constitutes the multi-layer nature

of the subject architecture. Figure 1 depicts the architecture

and the deployment scheme of the subject application as

used in our experiments. Without loss of generality, this

1Redis is a NoSQL key-value datastore.

Front-End Tier Logic Tier Analytics Tier Data Tier

. . .

Users

L
o
a
d
B
a
l
a
n
c
e
r

. . .

Web Cluster

S
p
a
r
k
M
a
s
t
e
r

. . .

Spark Cluster

. . .

Cassandra Cluster

Autonomic Management System

Fig. 1: A typical four-tier, tree-layer application.

implementation assumes Apache Tomcat2 as the application

server, Apache Spark3 as the analytics engine and Apache

Cassandra4 as the NoSQL database. The container technology

of choice is Docker5.

The functionality and architecture of the subject application

are largely based on the LEGIS application [25], as it was

used in our previous experiments on Docker elasticity [26].

LEGIS is a distributed navigation service, which receives

directions requests and finds optimal paths based on current

traffic data. A set of original paths are forwarded from Tomcat

to Spark, which then finds the closest deployed traffic sensors

and uses these as keys to query Cassandra for local and current

traffic data. Once this data is acquired, it is analyzed and

Spark annotates the original paths with a score indicating the

navigability of each segment. The annotated paths are returned

to the users.

LEGIS architecture is common; it can be found in any web

application that includes real-time analytics such as recom-

mender systems. Given the focus on container technology

and big data analytics, our work covers a wide range of

applications, where, up to a degree, the same challenges exist,

especially with respect to monitoring and the execution of

the adaptive actions. Even with respect to the performance

model, the use of established theoretical background, such

is that of layered queuing networks, implies that our model

remains topical and can be applied to applications with any

number and type of layers and queues (tiers), with minimal

modification and extension.

B. Performance Model

Since one of the goals of the DevOps method is dynamic

scaling (elasticity), to find the required amount of resources

(containers and VMs) that brings the system back to a desired

state, we propose a multi-tier, multi-layer performance model

to support containerized and analytics-based applications in

cloud. Additionally, the model acts as the integrator between

the development and operations teams. The former is respon-

sible for profiling the application and identifying its demands

2http://tomcat.apache.org/
3http://spark.apache.org/
4http://cassandra.apache.org/
5https://www.docker.com/

6767

for resources, such as CPU, memory, disk network and so on.

In design time, these demands are used to build the model.

In runtime, the operations team uses the model to regulate

the performance of the application and guarantee its service

level objectives. Moreover, the operations team is responsible

for updating the model at runtime to maintain its accuracy as

the environmental conditions of the application change. Our

model-based automated management system automates the

last two steps, which are the responsibility of the operations

team, effectively creating a DevOps tool for the development

team.

The model creates a representation of the system using

three queuing networks (layers) based on the layered queuing

network (LQN) theory [4]. It captures the details of the soft-

ware resources in the first layer, the containers in the second

layer and the virtual machines (VM) in the third layer. Each

resource has an associated demand, which is the processing

time necessary to handle a single request at that resource.

Ideally, for hardware resources (CPU, disk), the demands are

measured, possibly as the result of profiling. If measurement

is not possible (either because there are no tools available or

the overhead is too big), then a method to estimate them is

required. For the software resources, the demands are in fact

response times from the layer below (see Figure 2). Therefore,

the service time of requests at an application resource is given

by the response time of the container queuing network and the

service times from the container layer are determined by the

hardware queuing network.

Figure 2 shows the three-layered performance model of

a four-tier application for which the three back-end tiers

have been modeled, excluding the presentation/front-end tier.

The three back-end tiers include: logic tier represented

by the web software resource, analytics tier represented

by the Spark resource and the data tier represented by

the Cassandra resource. The software resources (web,

spark and Cassandra) run in containers (container1,

container2 and container3 respectively), and each

container runs on one or more CPUs.

To solve the model, we leverage Schweitzer’s approximation

algorithm [27] for mean value analysis (MVA) to find the tar-

get performance metrics such as utilization, response time and

throughput for each layer. This algorithm is iterative, where

at each iteration it checks if the configuration is stable (the

configuration is considered to be stable if, in two consecutive

iterations, the queue lengths at the resources change less than

a given value). If the configuration is not stable, the users will

be redistributed among the resources and a new iteration starts.

If the configuration is stable, the algorithm stops and outputs

the calculated metrics. To iterate between layers, a fix point

algorithm can be used.

Overall, the performance model can be seen as a function

M defined in Equation 1.

[Ue, RTe, Xe] =M(N,Z, container#, VM#, D) (1)

where Ue is estimated CPU utilization for all resources,

RTe is the estimated response time and Xe is the estimated

Virt.
res.

CPU1

D1

CPU2

D2

CPU3

D3

Cont1

Rc
1

Cont2

Rc
2

Cont3

Rc
3

Web

Rs
1

Spark

Rs
2

Cass

Rs
3

Think
Time

Software
Queuing Network

Container
Queuing Network

Hardware
Queuing Network

Fig. 2: A three-layered queuing network of resources for modeling
containerized cloud applications. Each resource can have a multiplic-
ity factor associated—i.e., there are multiple copies of that resource,
and the requests are evenly distributed among the copies.

throughput. N indicates the number of users in the system

(workload), Z denotes the think time of the users and D is

the service demand for all resources. U and D are vectors.

Note that in Figure 2, we have multiplicity for service units

at all three layers. More specifically, in the hardware layer,

we have multi-core CPUs for VMs, in the container layer, we

may have multiple containers for Web, Spark or Cassandra

clusters and finally in the software queuing network we have

multi-threading. As a result, all queues are multi-server.

C. Dealing with structural uncertainties in the model

When an application is deployed on a containerized topol-

ogy in cloud, there are extra delays introduced by the cloud

infrastructure or cloud management. The interactions among

application components and services reach layers of the cloud

and network that are not known or accessible to the application

developer. Although these extra delays are reflected in the

measured application performance metrics, their source cannot

always be identified [28], [29] and, thus, their source or

intensity should be considered as uncertainty. In other words,

even if we know everything about our application, it is not

enough from a performance point of view, since we cannot

capture all infrastructure performance related factors. We call

these unmodeled dynamics “structural uncertainties of the
model”, i.e., missing components, delays and queues that we

have not knowledge of. To account for unmodeled dynamics,

we propose to add a serial virtual resource, in the cloud layer,

representing a delay center. This serial virtual resource will

account for the delays in the application requests processing,

due to additional delays in the cloud (see Figure 2). The

parameters of this delay center, such as service times and

visit probabilities are unknown at design time and they will

be identified at runtime together with other parameters of the

model. The reason the virtual resource is added on the cloud

layer is due to the assumptions that from a user/manager

perspective the software and container layers are controllable

and generally known, while, especially for public clouds, the

6868

bottom layer is out of scope. Therefore, this is where the

uncertainty lies.

D. Estimating parameters and tuning the model

In order to solve the layered performance model presented

in Figure 2 we need to specify the workload (arrival rates

or number of users), the topology of the application (the

resources and how a request moves from one resource to the

next) and the demand for each resource. These have to be

measured or estimated. Among these, the hardest to measure

are the demands, since they require instrumentation of each

request at the kernel level and thus yield large overheads.

Since utilization (U) and throughput (X) for each resource

are easier to measure, we can use the formula U = XD to

estimate the demands D. However, the measured value might

contain noise and measurement errors, and the formula would

produce wrong values. A better way to estimate D is to take

into account the measurement and modeling noise and use

estimators. This has been used in the past with very good

results for non-cloud deployments [30], [31].

In this paper we use Kalman filter [21] to estimate the model

parameters, which we cannot measure. Figure 3 shows the

interactions among Kalman filter and performance model that

are being orchestrated by autonomic manager. As can be seen

in Figure 4 the autonomic manager connects the “Management

Loop” to “Model Loop” by directing the measured data

toward performance model. The measured metrics are: Mes =
[RT,X,Uw, Ua, Uc], where RT is the response time of the

application, X is the throughput, U is the mean utilization

and w, a, c denote the web, the analytics and the Cassandra

cluster. The estimated metrics are D = [Dw, Da, Dc, Dv]
where D stands for Demand and w, a, c for web, analytics

and Cassandra clusters and v for the virtual resource. The

model M (defined by Equation 1) will predict the vector

P = [RTm, Xm, Um
w , Um

a , Um
c]. The estimation of the vector

D is done periodically at run-time to maintain the accuracy

of the performance model (Figure 3). When a new set of

measured values Mes is available, if the model would produce

significantly different predictions P (that is, the square root of

P −Mes greater than some acceptable value) then Kalman

filter is used to estimate new demands D. These demands are

then fed to the model. The number of measured metrics is

greater than the number of estimated ones and therefore the

necessary condition of convergence is ensured [19].

Calibration is a relatively light operation so that it can be

done for every single system measurement without affecting

reaction time of the autonomic manager.

IV. AUTONOMIC MANAGEMENT SYSTEM

The proposed AMS (see Figure 4) follows the MAPE-K

architecture [32] for adaptive software systems. According to

this architecture the AMS, first, has a Monitoring module,

which manages a set of sensors and monitoring agents re-

sponsible for gathering measurements from the components,

layers and tiers of the managed applications. Second, it has

an Analysis module responsible for analyzing the gathered

Performance Model

Kalman Filter
Autonomic
Manager

Measures [N, Container#, VM#] Demands [Dw, Da, Dc, Dv]

Plans
≈

Measures [RT, X, Uw, Ua, Uc]

Estimated [RT, X, Uw, Ua, Uc, Uv]

Yes No

Metrics

Fig. 3: Interactions among performance model, Kalman filter and
autonomic manager; this figure elaborates the “Model Loop” of
Figure 4.

Model Loop
Management Loop

Parameter
Estimator

Performance
Model

Autonomic
Manager

Exe-
cutor

Managed
System

Monitor

User’s Requests Replies

plan

#containers

metrics

metrics

Fig. 4: The architecture of the proposed Autonomic Management Sys-
tem. The AMS continuously monitors the managed system, evaluates
it’s health and makes changes if necessary.

measurements and identifying if there are any problematic

situations now or in the near future, for example, resource

saturation or high response time. Third, it has a Planning

module, whose responsibility is to find an adaptive action to

rectify the problematic situation identified before. Finally, the

AMS has an Execution module responsible for applying the

adaptive actions as identified during the planning phase. This

last module can either act directly on the system or connect to

other execution engines provided by the cloud or the software

infrastructure.

In this section, we describe in general the characteristics of

the MAPE architecture for the proposed AMS, in addition to

the specific details of our implementation, which is also used

in the consequent experiments.

A. Monitoring

The monitoring module is responsible for keeping track of

those metrics that may indicate a problem with the applica-

tion’s performance and help developers or the AMS, if the

process is automatic, guarantee the application’s health. These

metrics may span across all layers and tiers, thus different

tools and agents may be necessary. The proposed monitoring

module gathers CPU utilization for all the back-end tiers of

the applications (Web, Spark and Cassandra) on the container

level, CPU utilization of the host VMs, as well as response

time and throughput from the entire system. Measurements are

6969

gathered through third party tools including Ceilometer6 from

the OpenStack cloud and Docker Stats API7.

B. Analysis and Planning

The proposed manager uses a simple analysis module;

specific thresholds are placed on the monitored performance

metrics, for example, “average CPU utilization on web or

Spark cluster cannot exceed 70%”. The particular values for

the thresholds greatly depend on the application, the demand it

generates and the service level objectives. For this reason, the

process of defining the thresholds requires rigorous profiling

of the application and testing in production, after deployment,

also a DevOps requirement [8]. Upon violation of one of

the thresholds, the planning module is activated. Normally, a

different plan is called for every threshold violated; if memory

is saturated, the plan is to increase the memory resource in the

topology, if CPU is saturated the plan is to increase the number

of cores in the infrastructure and so on.

Our planning phase uses the performance model to decide

what actions to take. In current state-of-practice, like Open-

Stack Heat8 or Amazon EC2 AutoScaling9, the adaptation

plans are defined statically at design time. For example, when

the developers set up the auto-scaling capabilities, they say that

every time an upper threshold is crossed one virtual machine

or one container will be added in the topology. We argue that

the nature of the adaptive actions should be more dynamic as

a threshold can be crossed in a variety of scenarios. Therefore,

while the action that is to be taken is important, its intensity
is also crucial.

The proposed performance model allows us to respond to

each problematic situation differently. With the ability of the

model to try different topologies for given workloads on the

fly, it is possible that each time it is invoked it may return

a different combination of resources to address the problem.

In addition to the model that provides us with dynamic

scaling actions depending on the given situation, we use an

additional step to determine whether the scaling action is

actually necessary at that point. The fact, and the challenge,

with respect to web traffic is that it is rather irregular, mean-

ing that there can be sudden and short spikes, upwards or

downwards, which can cause the system to temporarily look

out of order. These spikes can throw an AMS off and cause

unnecessary scaling actions, which will have to be undone

almost immediately. Considering that a monitoring service

gathers new measurements approximately once every minute

and a decision is made at that point, if every check resulted in

an action, such frequent and violent oscillations in the system’s

infrastructure could have a detrimental effect on the end-users

as well as on the system’s budget. Current AMSs used by

practitioners provide the option to define a recurrence factor

for threshold violations. In other words, the AMS takes action

6http://docs.openstack.org/developer/ceilometer/
7https://docs.docker.com/engine/reference/api/docker remote api v1.23/#/

get-container-stats-based-on-resource-usage
8http://docs.openstack.org/developer/heat/
9https://aws.amazon.com/autoscaling/

only when a threshold is violated n times, where n is defined

in design time.

In our work, we take this guard one step further and

we propose the “Scaling Heat Algorithm” (Algorithm 1) for

containers. The algorithm is used in conjunction with the

performance model right after the analysis phase. Central

concept is that of “heat”, which determines the buildup for

adding or removing containers. A violation of upper thresh-

olds, indicating a saturation of a container cluster, will result

in increasing the heat factor (lines 1–4), while a violation

of lower thresholds, i.e., underutilized clusters, will result

in decreasing heat (lines 5–8). As the heat factor grows, it

increases the chance of adding containers and vice versa.

After the result of the analysis is determined, the heat factor

is changed accordingly. If there is no violation, heat returns

gracefully to zero, one step at a time (lines 9–13). When it

hits a given number n (we use 5 in our experiments), either

positive for additions or negative for removals, the algorithm

informs the AMS to execute the scaling action as directed by

the model (lines 14–19). After an action is performed, the heat

factor returns to zero immediately. The algorithm is executed

at every decision point when new measurements are acquired

from the monitoring service.

The main difference between the scaling heat and the

traditional recurrence factor is that the latter requires for the

violations to reoccur consequently. If a spike of the opposite

direction occurs while we are within the recurrence range,

then the factor resets. This way the system can get stuck in

violation for a long time. By simply adjusting the heat factor

when opposite or no violations occur and not resetting it, we

avoid these perpetual situations. Figure 5 shows a slice of

data from our experiments that shows the progress of the heat

factor for the web cluster (top plot) and for the Spark cluster

(middle plot) and the CPU utilizations (bottom plot) that cause

the fluctuations in heat. Taking iteration 210 as an example,

we can see that Spark has generated a heat of 4, but in the next

iteration we see a reduction. This would have reset a traditional

recurrence factor, thus negating and delaying a scaling action,

which becomes necessary only two iterations later.

In general, the available actions in our AMS are “ad-
d/remove Tomcat container(s)” and “add/remove Spark con-
tainer(s)”. The latter is rather straightforward as the addition

of a Spark worker requires only the configuration of Spark

master so that it knows about the new member of the cluster.

On the other hand, adding a Tomcat worker implies also the

addition of Spark workers. The reason lies in how Spark

operates10. A Tomcat server contains a driver, a process that

manages all the tasks that are to be executed by the analytics

service. In order to actually run a job, a driver needs to be

tied with an executor, a process on the Spark side. When a

new Tomcat worker starts, but there are no available Spark

workers to connect the driver with the executor, then the new

web worker would be blocked and result in high response

10Spark Cluster Mode Overview: http://spark.apache.org/docs/latest/
cluster-overview.html

7070

Algorithm 1: Scaling Heat Algorithm: The decision

making algorithm for adding and removing containers to a

cluster. This algorithm is executed every time a new set of

measurements is available and a decision has to be made

regarding cluster elasticity.

input : utilization — the average CPU utilization of containers in a
cluster

input : lower threshold and upper threshold — the limits of the
desired range for the CPU utilization of containers in a
cluster

input : heat — a value indicating the buildup for adding/removing
containers to/from a cluster

output : heat — the new value to be used in the next iteration

1 if utilization ≥ upper threshold then
// cluster overload

2 if heat < 0 then
// reset any buildup for container removal

3 heat← 0;

4 heat← heat+ 1;

5 else if utilization ≤ lower threshold then
// cluster underload

6 if heat > 0 then
// reset any buildup for adding containers

7 heat← 0;

8 heat← heat− 1;

9 else
// the utilization is within range
// move heat one unit towards 0

10 if heat > 0 then
11 heat← heat− 1;

12 else if heat < 0 then
13 heat← heat+ 1;

14 if heat = n then
15 Invoke model to find number of extra containers to be added;
16 heat← 0;

17 else if heat = −n then
18 Invoke model to find number of excess containers to be removed;
19 heat← 0;

20 return heat

time. By adding new Spark workers along with the Tomcat

worker, we guarantee that there will be at least one free

executor slot for the new web worker. In our experiments, we

add two Spark workers for every new Tomcat to increase the

possibility for a free executor. If the web worker connects to

an already available Spark worker, rendering the new Spark

workers unnecessary, this situation could be resolved in the

next iteration, where the extra Spark worker will be removed,

since it is not being used.

As far as the management of virtual machines is concerned,

this is achieved indirectly. As it was explained in our previous

work [26], in order to enable autoscaling of containers in

a meaningful manner, one has to constrain the resources

that become available from the host VM to the containers,

effectively building what we called computation units. As a

consequence, this creates a notion of capacity for the VMs,

i.e., how many computation units they can hold depending on

their size. In the process of scaling containers, if the capacity

of the available VMs is exhausted, or about to, the AMS

���

���

���

���

���

���

���

���� ���� ���� ���� ���� �	��
�
�

�
�

�
�

�
�

���

���

���

�
�
��
�
��
��
��
�

�
��
�

�������������� ��������

���

���

���

���

���

���

���� ���� ���� ���� ���� �	��

��
�
�
�
�
�
�
�
�
���
���
���
���

�
�
��
�
��
��
��
�

�
��
�

���������������� ����������

�	�

���

���

���

���

���

� �

���� ���� ���� ���� ���� �	��
�	�

���

���

���

���

���

� �

��
!�
!�
�"�
#�
���
�
�$

�

��
!�
!�
�"�
#�
���
�
�$

�

����� �����������

Fig. 5: The evolution of heat in Experiment 3.

automatically adds another virtual machine. The new VM is

added in the Docker Swarm cluster and becomes available as

a container host.

C. Execution

To apply the planned adaptive actions, the proposed AMS

relies on third-party services. For example, to add or remove

virtual machines, the manager uses a REST API, which is

usually available by the cloud provider. Similarly, it uses

the Docker API for corresponding actions with containers. A

noteworthy detail on container scaling is that Docker Swarm11,

responsible for container placement in host VMs, does not

allow the developer to control to what host VMs the containers

will land. Nevertheless, the developer can configure Swarm’s

placement strategies12, choosing between spread, random, and

binpack. In our experiments, we used the binpack strategy to

minimize the number of required VMs.

V. EXPERIMENTS

In order to evaluate our work in a complete manner, we

designed and performed two sets of experiments. The first

focuses on the autonomic management system. The experi-

ments in this case are on an actual cloud environment with a

real application and the goal is to demonstrate the ability of

11The version of Docker Swarm we use is 1.2.4.
12https://docs.docker.com/swarm/scheduler/strategy/

7171

���

���

���

���

���

���

�� ��� ���� ���� ���� ���� ���� ���� ���� ����
���

���

���

���

���

���

�
�
��
�
��
��
��
�

�
�
��
��
�

�������	
���� �����	
���� ���

���
���
���
���
���
���
���
��
���
���
���

�� ��� ���� ���� ���� ���� ���� ���� ���� ����
���
���
���
���
���
���
���
��
���
���
���

��

�

�
�	�
��
���
�
��

�

��

�

�
�	�
��
���
�
��

�

�������� ����� �����������

�%�

�%�

�%�

�%�

�%�

��%�

��%�

�� ��� ���� ���� ���� ���� ���� ���� ���� ����
�%�

�%�

�%�

�%�

�%�

�%�

�%�

�%�

��
&�
'��

��
��
�
�

����(�	����� ����������)�

Fig. 6: Experiment 1: Coupled clusters with linearly increasing/de-
creasing workload. The Web and Spark containers are added/removed
together to guarantee that there are enough Spark containers avail-
able for the Web containers.

the AMS with the model to properly manage the behavior of

the application. The experiments also show the ability of the

AMS to handle either consistent or variable workload with the

same efficiency and, additionally, they illustrate the correlation

between the tiers in terms of performance metrics and how the

AMS can regulate the performance of the whole system with

independent adaptive decisions on parts of it. The second set

of experiments focuses on the model, where we empirically

validate its ability to accurately capture the performance of

the multi-tier, multi-layer application and its ability to quickly

converge after recalibration.

A. Evaluation of Autonomic Management System

The evaluation of the autonomic management system fo-

cuses on its applicability on real applications and real cloud

settings, as well as its efficiency in regulating the application’s

performance with the assistance of the model given dynamic

workloads. We designed three experiments; one with regular

workload (increasing, then decreasing) and coupled clusters

(Spark containers are added/removed only along with Tomcat

containers), one with regular workload but decoupled clusters

(Spark and Tomcat containers are scaled independently), and

one with more realistic workload and decoupled clusters.

The experiments are performed on the LEGIS application

���

���

���

���

���

���

�� ��� ���� ���� ���� ���� ���� ���� ����
���

���

���

���

���

���

�
�
��
�
��
��
��
�

�
�
��
��
�

�������	
���� �����	
���� ���

���
���
���
���
���
���
���
��
���
���
���

�� ��� ���� ���� ���� ���� ���� ���� ����
���
���
���
���
���
���
���
��
���
���
���

��

�

�
�	�
��
���
�
��

�

��

�

�
�	�
��
���
�
��

�

�������� ����� �����������

�%�

�%�

�%�

�%�

�%�

��%�

��%�

�� ��� ���� ���� ���� ���� ���� ���� ����
�%�

�%�

�%�

�%�

�%�

�%�

�%�

�%�

��
&�
'��

��
��
�
�

����(�	����� ����������)�

Fig. 7: Experiment 2: Decoupled clusters with linearly increasing/de-
creasing workload. Addition and removal of containers happens
independently for the two tiers. Web containers compete with each
other to grab Spark containers.

TABLE I: Container Settings

Size RAM Quota of Host’s CPU

Load Balancer large 4 GB 25.0%
Web Node large 4 GB 25.0%
Spark Master large 4 GB 25.0%
Spark Node medium 2 GB 12.5%
Cassandra Node large 4 GB 25.0%

deployed on SAVI [33], an OpenStack research cloud, with

Docker containers. The Docker Swarm cluster consists of

Ubuntu 16.04 VM hosts, with 16GB RAM, 8 vCPU and

160GB disk. In the experiments, we use Docker version 1.11,

Apache2 load balancer version 2.4.7, Tomcat version 7, Spark

version 1.6.1, and Cassandra version 2.2.7. As far as the

containers are concerned, we define two sizes, medium and

large, based on constrained resources. The sizes and how they

are used in the topology are outlined in Table I.

In all three experiments we captured the progress of the

performance metrics (average CPU utilization for each cluster,

response time) while the system experiences workload (arrival

rate). The metrics are measured directly from the system using

the monitoring module. During the experiments, the number of

containers and VMs change and are the direct product of the

manager’s activity as a response to variations in workload. The

7272

goal for the AMS is to maintain the CPU utilization between

50% and 70%.

Figures 6 and 7 show the results for the first two experiments

when the system experienced regular workload, the difference

being that in the first one the scaling of Spark is tied with

that of Tomcat. This can be seen in the upper plots of the two

figures; in Figure 6 whenever we have an addition/removal of

a Tomcat container, we have a symmetric addition/removal

of two Spark containers, while in Figure 7 we can see a

Spark container being removed (around iteration 150) or being

added (around iteration 320) without a removal/addition of a

Tomcat container. The independent decision making results in

lower number of containers in the latter case, as well as better

management of resources for Spark; in the first experiment, we

overprovision Spark containers, resulting in relatively lower

CPU utilization, indicating underutilized clusters. In addition,

it resulted in slightly better VM management; the fourth VM is

added slightly later around iteration 200, while the third one

is removed a little earlier in the second experiment, around

iteration 320. Finally, we can also see that thanks to the

model, the AMS can make dynamic decisions, evident around

iteration 320 in either figure, where two Tomcat containers are

removed, when usually the AMS changes one container at a

time.

Figure 8 shows the result of the third experiment, where

scaling in the two cluster is also decoupled, but the workload

is irregular. The experiment shows that the manager maintains

the CPU utilization and response time in this scenario as well.

This indicates the robustness of the AMS in handling any kind

of workload. In this figure, the independent decisions are more

evident, with respect to Spark scaling. Finally, in all three

experiments, the response time is kept almost constant, which

is the ultimate goal of scaling.

B. Model Validation

To validate the accuracy of the proposed model, we used

traces from the actual LEGIS application. First, we used the

OPERA tool [34] to implement the proposed layered multi-tier

performance model and be able to conduct the experiments

in a streamlined manner. To acquire the trace, we deployed

the application on the SAVI OpenStack cloud with Docker

containers. We then fed it with a linearly increasing workload,

one extra user at a time, and measured the CPU utilization for

the Web and Spark clusters, response time and throughput

of the system. The next step was to get the workload and

the topology (number of containers in each layer) for each

iteration, provide them as input to the model and estimate the

new measurements. We performed a few trial runs to identify

how often we need to recalibrate the model using Kalman

filters. We found that to achieve error rate less than 10%, we

will have to calibrate every 10 iterations approximately, for

less than 5% every 2 iterations and for less than 1% error rate

every 1 iteration.

Given these calibration rates as parameters for our experi-

ments, we executed three runs of the model, one for each rate,

and compared the measured values, from the application trace,

���

���

���

���

���

���

�� ���� ���� �	�� ���� ���� ����
���

���

���

���

���

���

�
�
��
�
��
��
��
�

�
�
��
��
�

��������	����
�����	���� ���

���
���
���
�	�
���
���
���
���
���
��
���

�� ���� ���� �	�� ���� ���� ����
���
���
���
�	�
���
���
���
���
���
��
���

��
	�
	�
���
��
���
�
��

�

��
	�
	�
���
��
���
�
��

�

�������� �����
���
������

�%�
�%�
�%�
	%�
�%�
�%�
�%�
�%�
�%�
%�
��%�

�� ���� ���� �	�� ���� ���� ����
�%�

�%�

�%�

�%�

�%�

	%�

	%�

�%�

��
&�
'��

��
��
�
�

����(������� ����������)�

Fig. 8: Experiment 3: Decoupled clusters with irregular workload.

with the estimated ones, from the model. Table II presents the

results of the three runs in terms of the average error rate.

As it was expected, the more frequently Kalman is invoked,

the more accurate the model becomes. For calibration at every

iteration, the model achieves error rate between less than 0.1%

to 0.2% for all four metrics. As the frequency of the calibra-

tion decreases, the error rate increases, but disproportionally;

between 4% and 4.8% for every 2 iterations and between 5.9%

and 8.9% for every 10 iterations. While an error rate of less

than 10% is acceptable, the Kalman calibration is actually a

cheap process. Therefore, we can invoke it as frequently as

we want to further decrease our error rate.

TABLE II: Evaluation results for model accuracy and calibration
rate

Calibration rate (#iter) 1 2 10

CPU Web Error (%) 0.089 4.838 7.868
CPU Spark Error (%) 0.156 4.496 7.789
Response Time Error (%) 0.219 4.043 8.993
Throughput Error (%) 0.164 4.537 5.926
Precision (CPU Web) 0.99 0.86 0.65
Recall (CPU Web) 0.99 0.75 0.67
F-measure (CPU Web) 0.99 0.80 0.66
Precision (CPU Spark) 1.00 0.83 0.65
Recall (CPU Spark) 0.98 0.84 0.80
F-measure (CPU Spark) 0.99 0.84 0.72

Besides the absolute error rate of the model, it is interesting

7373

to investigate its relative error with respect to scaling, in

other words the potential of the model to make accurate

scaling decisions. To validate this ability, we measured the

number of times where the model agreed with the trace that

a scaling action is required, i.e., CPU utilization greater than

70% or lower than 50% in either cluster (true positive). We

also measured the times where the model did not agree with

the trace, when a scaling action was in fact required (false
negative) or when it was not required (false positive). Based

on these counts, we are able to calculate precision, recall

and F-measure, also presented in Table II. Calibration is also

crucial in this case, as it increase precision and recall to 99%

if performed in every iteration. This implies that the model

can be trusted as a decision mechanism for scaling actions.

As the frequency of the calibration decreases, precision and

recall greatly deteriorate, meaning that the model becomes

more prone to bad scaling decisions.

VI. CONCLUSION

Our work revolves around the concept of DevOps and the

goal is to integrate automated operation tools in the develop-

ment process. This is to allow developers to better manage

their application either during development, deployment or

production and IT experts to get a more complete picture about

the deployed application, thus effectively bridging the gap

between the two teams. This particular paper focuses on the

autonomic management of a complex deployed application,

with multiple application tiers and infrastructure layers, with

the use of a model to predict and estimate the performance

of the system under various workloads and topologies and be

used to determine a topology that would regulate its behavior

in the event of high or low workload.

Our experiments demonstrate the accuracy and robustness of

the proposed model to estimate the application’s performance

and to be used by an autonomic management system for

scaling. The model is as simple as possible, at the same time

accurate for its purpose: finding a deployment architecture

that meets performance requirements. The model is designed

to handle complex multi-tier and multi-layer data-intensive

applications, a popular and topical domain for web software

systems. The proposed autonomic management system based

on the aforementioned performance model is also shown

empirically to be applicable and robust against a variety of

workloads and topologies. The AMS is also capable of making

decisions for the various tiers independently and result in more

efficient scaling actions in terms of resource management.

ACKNOWLEDGMENT

This research was supported by IBM Centres for Advanced

Studies (CAS), the Natural Sciences and Engineering Council

of Canada (NSERC) under the Smart Applications on Vir-

tual Infrastructure (SAVI) Research Network and the Ontario

Research Fund for Research Excellence under the Connected

Vehicles and Smart Transportation(CVST) project.

REFERENCES

[1] M. Hüttermann, DevOps for developers. Apress, 2012.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[3] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel et al., “Software
engineering for self-adaptive systems: A second research roadmap,” in
Software Engineering for Self-Adaptive Systems II. Springer, 2013, pp.
1–32.

[4] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi,
“Enhanced modeling and solution of layered queueing networks,” IEEE
Transactions on Software Engineering, vol. 35, no. 2, pp. 148–161, 2009.

[5] D. Spinellis, “Being a devops developer,” IEEE Software, vol. 33, no. 3,
pp. 4–5, 2016.

[6] L. Zhu, L. Bass, and G. Champlin-Scharff, “Devops and its practices,”
IEEE Software, vol. 33, no. 3, pp. 32–34, 2016.

[7] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspec-
tive. Addison-Wesley Professional, 2015.

[8] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos engineering,” IEEE Software,
vol. 33, no. 3, pp. 35–41, 2016.

[9] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables devops: Migration to a cloud-native architecture,” IEEE
Software, vol. 33, no. 3, pp. 42–52, 2016.

[10] Kubernetes, “Production-Grade Container Orchestration,” 2016.
[Online]. Available: http://kubernetes.io/

[11] C. Sanchez, “Scaling Docker with Kubernetes V1,” 2015. [Online].
Available: http://www.infoq.com/articles/scaling-docker-kubernetes-v1

[12] D. Inc., “Docker Compose,” 2016. [Online]. Available: https:
//docs.docker.com/compose/

[13] B. Christner, “How to scale Docker Containers with Docker-
Compose,” 2015. [Online]. Available: https://www.brianchristner.io/
how-to-scale-a-docker-container-with-docker-compose/

[14] A. Mesos, “Program against your datacenter like its a single pool of
resources,” 2015. [Online]. Available: http://mesos.apache.org/

[15] I. Mesosphere, “A container orchestration platform for Mesos
and DCOS,” 2015. [Online]. Available: https://mesosphere.github.io/
marathon/

[16] ——, “Autoscaling Marathon services using CPU and memory,” 2015.
[Online]. Available: https://docs.mesosphere.com/1.7/usage/tutorials/
autoscaling/cpu-memory/

[17] F. Ltd, “Microscaling - real-time auto-scaling using constant feedback
from your running system,” 2016. [Online]. Available: https://
microscaling.com/

[18] A. EC2, “Amazon EC2 Container Service - Developer
Guide (API Version 2014-11-13),” 2016. [Online]. Avail-
able: http://docs.aws.amazon.com/AmazonECS/latest/developerguide/
cloudwatch alarm autoscaling.html

[19] M. Woodside, T. Zheng, and M. Litoiu, “The use of optimal filters to
track parameters of performance models,” in QEST ’05: Proceedings
of the Second International Conference on the Quantitative Evaluation
of Systems. Washington, DC, USA: IEEE Computer Society, 2005,
p. 74. [Online]. Available: http://dx.doi.org/10.1109/QEST.2005.40

[20] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model
evolution by run-time parameter adaptation,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 111–121.

[21] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME–Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[22] N. Huber, F. Brosig, S. Spinner, S. Kounev, and M. Bahr, “Model-based
self-aware performance and resource management using the descartes
modeling language,” IEEE Transactions on Software Engineering, 2016.

[23] A. M. Joy, “Performance comparison between linux containers and vir-
tual machines,” in Computer Engineering and Applications (ICACEA),
2015 International Conference on Advances in. IEEE, 2015, pp. 342–
346.

[24] Qasim Ali, Banit Agrawal, and Davide Bergamasco. (2016,
6) Docker containers performance in vmware vsphere.
[Online]. Available: http://blogs.vmware.com/performance/2014/10/
docker-containers-performance-vmware-vsphere.html

7474

[25] M. Fokaefs, D. Serrano, R. Veleda, and M. Litoiu, “Locality-Enhanced
Geographic Information System,” in 4th International IBM Cloud
Academy Conference, 2016.

[26] M. Fokaefs, C. Barna, R. Veleda, M. Litoiu, J. Wigglesworth, and R. Ma-
teescu, “Development and management of containerized data-intensive
applications: An exploratory study,” in CASCON 2016: Proceedings of
the 2016 conference of the Centre for Advanced Studies on Collaborative
Research. IBM Press, 2016.

[27] P. J. Schweitzer, G. Serazzi, and M. Broglia, A survey of bottleneck
analysis in closed networks of queues. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1993, pp. 491–508.

[28] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in
the cloud: observing, analyzing, and reducing variance,” Proceedings of
the VLDB Endowment, vol. 3, no. 1-2, pp. 460–471, 2010.

[29] M. Smit, B. Simmons, and M. Litoiu, “Distributed, application-level
monitoring for heterogeneous clouds using stream processing,” Future
Generation Computer Systems, vol. 29, no. 8, pp. 2103–2114, 2013.

[30] A. Filieri, L. Grunske, and A. Leva, “Lightweight adaptive filtering
for efficient learning and updating of probabilistic models,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, vol. 1, May 2015, pp. 200–211.

[31] T. Zheng, C. M. Woodside, and M. Litoiu, “Performance model estima-
tion and tracking using optimal filters,” IEEE Transactions on Software
Engineering, vol. 34, no. 3, pp. 391–406, May 2008.

[32] “An architectural blueprint for autonomic computing,” IBM, Tech. Rep.,
2005.

[33] SAVI. (2015, June) Cloud platform. http://www.savinetwork.ca.
[34] OPERA, “Optimization, Performance Evaluation and Resource

Allocator (OPERA),” 2013. [Online]. Available: http://www.ceraslabs.
com/technologies/opera

7575

